ATP synthase inhibition of Mycobacterium avium is not bactericidal.

Antimicrob Agents Chemother

Department of Antimicrobial Research, Tibotec BVBA, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium.

Published: November 2009

The efficacy of ATP synthase inhibitor TMC207 was assessed in early and late Mycobacterium avium infections in mice. In contrast to what was earlier observed for M. tuberculosis, a bacteriostatic effect was obtained. In vitro, the minimal bactericidal concentration (MBC)/MIC ratio was very high. The MBC was more relevant for assessment of pharmacokinetic/pharmacodynamic relationships than the MIC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772307PMC
http://dx.doi.org/10.1128/AAC.00689-09DOI Listing

Publication Analysis

Top Keywords

atp synthase
8
mycobacterium avium
8
synthase inhibition
4
inhibition mycobacterium
4
avium bactericidal
4
bactericidal efficacy
4
efficacy atp
4
synthase inhibitor
4
inhibitor tmc207
4
tmc207 assessed
4

Similar Publications

Unveiling novel pathways for drug discovery forms the foundation of a new era in the combat against tuberculosis. The discovery of a novel drug, bedaquiline, targeting mycobacterial ATP synthase highlighted the targetability of the energy metabolism pathway. The significant potency of bedaquiline against heterogeneous population of marks ATP synthase as an important complex of the electron transport chain.

View Article and Find Full Text PDF

ADP-inhibited structure of non-catalytic site-depleted FF-ATPase from thermophilic Bacillus sp. PS-3.

Biochim Biophys Acta Bioenerg

January 2025

Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan. Electronic address:

The F domain of FF-ATP synthases/ATPases (FF) possesses three catalytic sites on the three αβ interfaces, termed αβ, αβ, and αβ, located mainly on the β subunits. The enzyme also has three non-catalytic ATP-binding sites on the three αβ interfaces, located mainly on the α subunits. When ATP does not bind to the non-catalytic site, FF becomes significantly prone to ADP inhibition, ultimately resulting in the loss of ATPase activity.

View Article and Find Full Text PDF

Background: Lingual taste cells (LTCs) are taste buds' sensory cells that modulate gustation. This study’s aim is to assess whether it can be successfully implanted in hippocampus, modulating learning and memory deficits observed in Alzheimer’s Dementia (AD).

Methods: Retrospective trials on rodents i.

View Article and Find Full Text PDF

Previous research has highlighted the critical role of amino acid metabolism (AAM) in the pathophysiology of sepsis. The present study aimed to explore the potential diagnostic and prognostic value of AAM-related genes (AAMGs) in sepsis, as well as their underlying molecular mechanisms. Gene expression profiles from the Gene Expression Omnibus (GSE65682, GSE185263 and GSE154918 datasets) were analyzed.

View Article and Find Full Text PDF

Environmental Changes Driving Shifts in the Structure and Functional Properties of the Symbiotic Microbiota of .

Microorganisms

December 2024

MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai 200438, China.

Symbiotic microbiota significantly influence the development, physiology, and behavior of their hosts, and therefore, they are widely studied. However, very few studies have investigated the changes in symbiotic microbiota across generations. originating from the Qinghai-Tibetan Plateau were cultured through seven generations in our laboratory, and the symbiotic microbiota of were sequenced using a 16S rRNA amplicon to analyze changes in the structure and functional properties of the symbiotic microbiota of from a harsh environment to an ideal environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!