The aberrant localization of oncogenic kit tyrosine kinase receptor mutants is reversed on specific inhibitory treatment.

Mol Cancer Res

Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Cachan, 94235 Cachan, France.

Published: September 2009

Kit is a cell surface type III tyrosine kinase (TK) receptor implicated in cell transformation through overexpression or oncogenic mutation. Two categories of Kit mutants displaying mutations either in the juxtamembrane intracellular domain (regulatory mutants) or in the catalytic domain (catalytic mutants) have been described. To explore the effect of Kit oncogenic mutations on its subcellular localization, we constructed enhanced green fluorescent protein (EGFP)-tagged human Kit chimeras harboring mutations either in the regulatory (V560G) or in the catalytic (D816V) domain. When expressed in Chinese hamster ovary cells, EGFP-tagged wild-type Kit was activated on stem cell factor stimulation, whereas both EGFP-tagged Kit mutants displayed a constitutive TK activity. Constitutively activated mutants exhibited a high-mannose-type N-glycosylation pattern and an intracellular localization, suggesting that these mutants induce downstream oncogenic signaling without the need to reach the cell surface. Inhibition of constitutive Kit TK activity with dasatinib induced a complex, mature N-glycosylation pattern identical to unstimulated wild-type Kit and resulted in the redistribution of the mutants to the plasma membrane. This relocalization was clearly correlated to the inhibition of TK activity because imatinib, a specific inhibitor of the V560G mutant, inactive on the catalytic D816V mutant, induced only the relocalization of the V560G mutant. These data show that on TK inhibition, the aberrant localization of Kit mutants can be fully reversed. Kit mutants are then exported and/or stabilized at the cell surface as inactive and fully N-glycosylated isoforms.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-09-0138DOI Listing

Publication Analysis

Top Keywords

kit mutants
16
cell surface
12
kit
11
mutants
10
aberrant localization
8
tyrosine kinase
8
kinase receptor
8
catalytic d816v
8
wild-type kit
8
n-glycosylation pattern
8

Similar Publications

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF

Molecular Mechanisms of Synergistic Effect of PRIMA-1 and Oxaliplatin in Colorectal Cancer With Different p53 Status.

Cancer Med

January 2025

Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, People's Republic of China.

Article Synopsis
  • The study investigates combining PRIMA-1 with oxaliplatin (L-OHP) to enhance treatment efficacy for colorectal cancer (CRC) while addressing the drug's toxicity and resistance issues.
  • The results show that the combination therapy significantly improves cancer cell death and reduces cell migration and colony formation, regardless of p53 mutation status.
  • RNA-seq analysis reveals different cellular responses to the treatments based on p53 status, and in vivo studies confirm that the combination therapy enhances effectiveness and reduces toxicity compared to PRIMA-1 alone.
View Article and Find Full Text PDF

Discovery of 3-amide-pyrimidine-based derivatives as potential fms-like tyrosine receptor kinase 3 (FLT3) inhibitors for treating acute myelogenous leukemia.

Bioorg Med Chem Lett

December 2024

Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China. Electronic address:

Article Synopsis
  • FLT3-ITD and TKD mutants are key drivers in acute myeloid leukemia (AML), making FLT3 a promising target for new treatments.
  • To identify next-generation FLT3 inhibitors, researchers modified G-749 and found that a derivative named MY-10 showed strong and selective inhibition against FLT3-ITD and FLT3-D835Y mutants.
  • MY-10 was effective in blocking cell cycle progression, inducing apoptosis, and reducing harmful reactive oxygen species, while not affecting c-KIT kinase, suggesting its potential as a targeted ACML therapy.
View Article and Find Full Text PDF

Hypothyroidism is the most prevalent thyroid disorder and leads to adverse effects on the human body. Serum thyroid stimulating hormone (TSH) values have been related to polymorphisms in multiple genes that may be involved in the regulation of thyroid function. The single nucleotide polymorphism (SNP) rs2046045 is situated in the intron region of the phosphodiesterase 8B (PDE8B) gene, which encodes a high-affinity cyclic adenosine monophosphate (cAMP)-specific phosphodiesterase widely expressed in thyroid tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!