Anetoderma is a rare skin disease with loss of dermal elastic tissue resulting in clinically localized areas of flaccid or herniated sack-like skin. In this study, we report a case of Jadassohn-Pellizzari anetoderma, in a 21-year-old Chinese female with an 18-year history of progressively generalized wrinkled skin lesions. Multiphoton microscopy based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) was firstly employed to investigate the pathological process from unaffected skin to the erythematous phase and finally with affected skin of this case. The results showed that the normal elastic fibers in unaffected skin were almost completely absent in erythematous skin tissue, then replaced by a lot of elastic fibers with granular morphology in affected skin, which was consistent with the histopathological results. The obvious changes in collagen fibers and the occurrence of inflammatory cell infiltration in erythematous tissue suggested that the variations of these two components were also the main pathogenesis of anetoderma, except for the deficiency of elastic fibers. Based on these data, we demonstrated that multiphoton microscopy was a promising tool for non-invasive investigation of the pathology of anetoderma at nearly histological resolution, and has potential for observing the dermatological dynamic processes for living specimens because it is based on the intrinsic signals of tissue components.

Download full-text PDF

Source
http://dx.doi.org/10.1684/ejd.2009.0797DOI Listing

Publication Analysis

Top Keywords

multiphoton microscopy
12
elastic fibers
12
jadassohn-pellizzari anetoderma
8
microscopy based
8
based two-photon
8
two-photon excited
8
excited fluorescence
8
second harmonic
8
harmonic generation
8
skin
8

Similar Publications

In vivo two-photon FLIM resolves photosynthetic properties of maize bundle sheath cells.

Photosynth Res

January 2025

State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Maize (Zea mays L.) performs highly efficient C photosynthesis by dividing photosynthetic metabolism between mesophyll and bundle sheath cells. In vivo physiological measurements are indispensable for C photosynthesis research as photosynthetic activities are easily interrupted by leaf section or cell isolation.

View Article and Find Full Text PDF

Window into the Brain: In Vivo Multiphoton Imaging.

ACS Photonics

January 2025

Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia 26506, United States.

Decoding the principles underlying neuronal information processing necessitates the emergence of techniques and methodologies to monitor multiscale brain networks in behaving animals over long periods of time. Novel advances in biophotonics, specifically progress in multiphoton microscopy, combined with the development of optical indicators for neuronal activity have provided the possibility to concurrently track brain functions at scales ranging from individual neurons to thousands of neurons across connected brain regions. This Review presents state-of-the-art multiphoton imaging modalities and optical indicators for in vivo brain imaging, highlighting recent advancements and current challenges in the field.

View Article and Find Full Text PDF

According to the World Health Organization (WHO) musculoskeletal conditions are a leading contributor to disability worldwide. This fact is often somewhat overlooked, since musculoskeletal conditions are less likely to be associated with mortality. Nonetheless, treatments, therapies and management of these conditions are extremely costly to national healthcare systems.

View Article and Find Full Text PDF

Although long-term high dietary sodium consumption often aggravates hypertension and bone loss, sodium in the intestinal lumen has been known to promote absorption of nutrients and other ions, e.g., glucose and calcium.

View Article and Find Full Text PDF

In vivo three-photon fluorescence imaging of mouse brain vasculature labeled by Evans blue excited at the NIR-III window.

Biomed Opt Express

January 2025

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.

Multiphoton fluorescence microscopy (MFM), renowned for its noninvasiveness and high spatiotemporal resolution, is extensively applied in brain structure imaging in vivo. Three-photon fluorescence (3PF) imaging, excited at the NIR-III window, can penetrate the deepest mouse cerebrovascular. Evans blue, a substance known for its low toxicity, high water solubility, and resistance to metabolism, is frequently employed to assess blood-brain barrier (BBB) permeability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!