ZifBASE: a database of zinc finger proteins and associated resources.

BMC Genomics

Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605014, India.

Published: September 2009

Background: Information on the occurrence of zinc finger protein motifs in genomes is crucial to the developing field of molecular genome engineering. The knowledge of their target DNA-binding sequences is vital to develop chimeric proteins for targeted genome engineering and site-specific gene correction. There is a need to develop a computational resource of zinc finger proteins (ZFP) to identify the potential binding sites and its location, which reduce the time of in vivo task, and overcome the difficulties in selecting the specific type of zinc finger protein and the target site in the DNA sequence.

Description: ZifBASE provides an extensive collection of various natural and engineered ZFP. It uses standard names and a genetic and structural classification scheme to present data retrieved from UniProtKB, GenBank, Protein Data Bank, ModBase, Protein Model Portal and the literature. It also incorporates specialized features of ZFP including finger sequences and positions, number of fingers, physiochemical properties, classes, framework, PubMed citations with links to experimental structures (PDB, if available) and modeled structures of natural zinc finger proteins. ZifBASE provides information on zinc finger proteins (both natural and engineered ones), the number of finger units in each of the zinc finger proteins (with multiple fingers), the synergy between the adjacent fingers and their positions. Additionally, it gives the individual finger sequence and their target DNA site to which it binds for better and clear understanding on the interactions of adjacent fingers. The current version of ZifBASE contains 139 entries of which 89 are engineered ZFPs, containing 3-7F totaling to 296 fingers. There are 50 natural zinc finger protein entries ranging from 2-13F, totaling to 307 fingers. It has sequences and structures from literature, Protein Data Bank, ModBase and Protein Model Portal. The interface is cross linked to other public databases like UniprotKB, PDB, ModBase and Protein Model Portal and PubMed for making it more informative.

Conclusion: A database is established to maintain the information of the sequence features, including the class, framework, number of fingers, residues, position, recognition site and physio-chemical properties (molecular weight, isoelectric point) of both natural and engineered zinc finger proteins and dissociation constant of few. ZifBASE can provide more effective and efficient way of accessing the zinc finger protein sequences and their target binding sites with the links to their three-dimensional structures. All the data and functions are available at the advanced web-based search interface http://web.iitd.ac.in/~sundar/zifbase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746237PMC
http://dx.doi.org/10.1186/1471-2164-10-421DOI Listing

Publication Analysis

Top Keywords

zinc finger
40
finger proteins
24
finger protein
16
finger
13
natural engineered
12
modbase protein
12
protein model
12
model portal
12
zinc
10
protein
9

Similar Publications

Synthesis and functional screening of novel inhibitors targeting the HDAC6 zinc finger ubiquitin-binding domain.

Eur J Med Chem

December 2024

SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium. Electronic address:

Histone deacetylase 6 (HDAC6) is a promising target for treating neurodegenerative disorders, several cancer types and viral infections. Unique among HDACs, the HDAC6 isoform possesses a zinc finger ubiquitin-binding domain (UBD) crucial for managing misfolded protein aggregates and facilitating viral infection. HDAC6 binds aggregated polyubiquitinated proteins through its UBD, mediating their transport to the aggresome and subsequent removal via autophagy.

View Article and Find Full Text PDF

Polycystic kidney diseases (PKD) are genetic disorders which disrupt kidney architecture and function. Autosomal recessive PKD (ARPKD) is a rare form of PKD, caused by mutations in PKHD1, and clinically more severe than the more common autosomal dominant PKD (ADPKD). Prior studies have implicated Hedgehog (Hh) signaling in ADPKD, with increased levels of Hh components in experimental ADPKD and reduced cystogenesis following pharmacological Hh inhibition.

View Article and Find Full Text PDF

Microglia M1 polarization plays important role in the development of ischemic stroke (IS). This study explored the role of transcription factor 7 like 2 (TCF7L2) in regulating microglia M1 polarization during IS. TTC staining was used to determine the cerebral infarction, and Nissl staining was applied to examine neuronal injury.

View Article and Find Full Text PDF

Hepatopulmonary syndrome (HPS) is a severe lung injury caused by chronic liver disease, with limited understanding of the disease pathology. Exosomes are important mediators of intercellular communication that modulates various cellular functions by transferring a variety of intracellular components to target cells. Our recent studies have indicated that a new long noncoding RNA (lncRNA), PICALM-AU1, is mainly expressed in cholangiocytes, and is dramatically induced in the liver during HPS.

View Article and Find Full Text PDF

ZFAND6 is a zinc finger protein that interacts with TNF receptor-associated factor 2 (TRAF2) and polyubiquitin chains and has been linked to tumor necrosis factor (TNF) signaling. Here, we report a previously undescribed function of ZFAND6 in maintaining mitochondrial homeostasis by promoting mitophagy. Deletion of ZFAND6 in bone marrow-derived macrophages (BMDMs) upregulates reactive oxygen species (ROS) and the accumulation of damaged mitochondria due to impaired mitophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!