Enhancing gene delivery and expression in alveolar epithelial cells could offer the opportunity for the treatment of acquired and inherited lung diseases. Here, we show that particle adsorption of human insulin (INS) is capable of increasing plasmid DNA (pDNA) delivery from polyethylenimine (PEI) nanoparticles specifically in alveolar epithelial cells. INS receptors were predominantly detected on alveolar but not on bronchial epithelial cells. INS was adsorbed on the surface of PEI gene vectors by spontaneous self-assembly resulting in ternary PEI-pDNA-INS nanoparticles. Surface adsorption was confirmed by particle size, surface charge, and fluorescence resonance energy transfer (FRET) measurements. INS adsorption significantly increased gene expression of PEI-pDNA nanoparticles up to 16-fold on alveolar epithelial cells but not on bronchial epithelial cells. This increased gene expression was INS receptor specific. Our results demonstrate that targeting INS receptor for gene delivery in alveolar epithelial cells represents a promising approach for enhanced gene delivery and expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm900707j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!