AI Article Synopsis

  • The contraction of urinary bladder smooth muscle is triggered by ATP and ACh released from parasympathetic nerves, with both purinergic and muscarinic pathways playing a role, though their specific contributions are unclear.
  • Research using UBSM strips from both normal mice and those lacking P2X1 receptors showed that the absence of P2X1 significantly alters electrical activity and Ca(2+) signaling during and after nerve stimulation.
  • The study concludes that P2X1 receptors are crucial for immediate muscle contraction responses and also influence how muscarinic receptors operate later, indicating a complex interaction between these pathways in regulating bladder muscle contractility.

Article Abstract

Contraction of urinary bladder smooth muscle (UBSM) is caused by the release of ATP and ACh from parasympathetic nerves. Although both purinergic and muscarinic pathways are important to contraction, their relative contributions and signalling mechanisms are not well understood. Here, the contributions of each pathway to urinary bladder contraction and the underlying electrical and Ca(2+) signalling events were examined in UBSM strips from wild type mice and mice deficient in P2X1 receptors (P2X1(-/-)) before and after pharmacological inhibition of purinergic and muscarinic receptors. Electrical field stimulation was used to excite parasympathetic nerves to increase action potentials, Ca(2+) flash frequency, and force. Loss of P2X1 function not only eliminated action potentials and Ca(2+) flashes during stimulation, but it also led to a significant increase in Ca(2+) flashes following stimulation and a corresponding increase in the force transient. Block of muscarinic receptors did not affect action potentials or Ca(2+) flashes during stimulation, but prevented them following stimulation. These findings indicate that nerve excitation leads to rapid engagement of smooth muscle P2X1 receptors to increase action potentials (Ca(2+) flashes) during stimulation, and a delayed increase in excitability in response to muscarinic receptor activation. Together, purinergic and muscarinic stimulation shape the time course of force transients. Furthermore, this study reveals a novel inhibitory effect of P2X1 receptor activation on subsequent increases in muscarinic-driven excitability and force generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790264PMC
http://dx.doi.org/10.1113/jphysiol.2009.178806DOI Listing

Publication Analysis

Top Keywords

action potentials
20
potentials ca2+
20
ca2+ flashes
20
flashes stimulation
16
receptor activation
12
urinary bladder
12
smooth muscle
12
purinergic muscarinic
12
muscarinic receptor
8
bladder smooth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!