Luminescence properties of europium-doped cerium oxide nanoparticles: role of vacancy and oxidation states.

Langmuir

Advanced Materials Processing and Analysis Center (AMPAC), Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.

Published: September 2009

Enhancing the optical emission of cerium oxide nanoparticles is essential for potential biomedical applications. In the present work, we report a simple chemical precipitation technique to synthesize europium-doped cerium oxide nanostructures to enhance the emission properties. Structural and optical properties showed an acute dependence on the concentration of oxygen ion vacancy and trivalent cerium, which, in turn, could be modified by dopant concentration and the annealing temperature. Results from X-ray photoelectron spectroscopy showed an increase in tetravalent cerium concentration to 85% on annealing at 900 degrees C. The concentration of oxygen ion vacancy increased from 1.7x10(20) cm(-3) to 4.1x10(20) cm(-3) with the increase in dopant concentration. Maximum emission at room temperature was obtained for 15 mol % Eu-doped ceria, which improved with annealing temperature. The role of oxygen ion vacancies and trivalent cerium in modifying the emission properties is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la901298qDOI Listing

Publication Analysis

Top Keywords

cerium oxide
12
oxygen ion
12
europium-doped cerium
8
oxide nanoparticles
8
emission properties
8
concentration oxygen
8
ion vacancy
8
trivalent cerium
8
dopant concentration
8
annealing temperature
8

Similar Publications

In this work, cerium dioxide nanostructures were synthesized in an easy sonochemical way. CeO nanoparticles have received much attention in nanotechnology. CeONPs, exhibit biomimetic properties depending on their size, ratio of valency on their surface, and the ambient physico-chemical properties.

View Article and Find Full Text PDF

Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.

View Article and Find Full Text PDF

Nanoceria as a non-steroidal anti-inflammatory drug for endometriosis theranostics.

J Control Release

January 2025

Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 1030 Hitt Street, Columbia, MO 65211, USA. Electronic address:

Endometriosis, the growth of endometrial-like tissue outside the uterus, causes chronic pain and infertility in 10 % of reproductive-aged women worldwide. Unfortunately, no permanent cure exists, and current medical and surgical treatments offer only temporary relief. Endometriosis is a chronic inflammatory disease characterized by immune system dysfunction.

View Article and Find Full Text PDF

Thermal switches, which electrically turn heat flow on and off, have attracted attention as thermal management devices. Electrochemical reduction/oxidation switches the thermal conductivity (κ) of active metal oxide films. The performance of the previously proposed electrochemical thermal switches is low; the on/off κ-ratio is mostly less than 5, and the κ-switching width is less than 5 watts per meter kelvin.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates a new cancer treatment system called Chit-IOCO-MTX-Cy5, which combines chitosan nanocomposites with cerium oxide and iron oxide nanoparticles, along with methotrexate and a dye for imaging.
  • The system acts as both an anti-cancer agent and enhances MRI imaging, showing high effectiveness with better results than currently approved imaging agents.
  • It significantly reduces tumor growth with no regrowth after treatment, while showing good safety in mice, indicating its potential as an effective cancer theranostic tool.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!