We have synthesized a novel interface-anchoring alcohol dehydrogenase by covalent attachment of a hydrophobic polymer tail to the hydrophilic protein head. Analogous to a protein-based surfactant, this polymer-enzyme conjugate self-assembled at liquid-liquid or liquid-air interfaces to form a membrane similar to other surfactant monolayers. The packing and morphology of the interface-anchored enzymes play an important role in regulating the membrane behaviors including enzyme mobility and interfacial interactions of enzymes with reactant and product molecules. To characterize the surface assembly morphology of the interface-anchored enzymes, Langmuir film balance and fluorescence microscopy techniques were used. The Langmuir isotherm of the interface-anchored enzyme demonstrated a pronounced molecular rearrangement upon compression of the isotherm. This corresponded to changes in membrane morphology and state observed using fluorescence microscopy. The molecular diffusion within the novel interface-anchored enzymes was further evaluated by using a fluorescence recovery after photobleaching technique. We report a diffusion coefficient of 6.7x10(-10) cm2/s. The study represents the first in-depth analysis of surface packing and interfacial mobility of such interface-anchored enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la901076j | DOI Listing |
J Mater Chem B
November 2023
School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
DNA walkers have been widely explored and applied as biosensor elements to detect disease-related biomarkers. Traditional interface-anchored DNA walkers typically have a fixed swing arm range and an orientation of the preset track, which might complicate the design of a sensor system and limit its application in more scenes. We propose a simple electrochemical aptasensor to accurately detect Alzheimer's disease (AD) based on a nicking enzyme-powered DNA walker.
View Article and Find Full Text PDFLangmuir
September 2009
Department of Bioproducts and Biosystems Engineering and Biotechnology Institute, The University of Minnesota, St. Paul, Minnesota 55108, USA.
We have synthesized a novel interface-anchoring alcohol dehydrogenase by covalent attachment of a hydrophobic polymer tail to the hydrophilic protein head. Analogous to a protein-based surfactant, this polymer-enzyme conjugate self-assembled at liquid-liquid or liquid-air interfaces to form a membrane similar to other surfactant monolayers. The packing and morphology of the interface-anchored enzymes play an important role in regulating the membrane behaviors including enzyme mobility and interfacial interactions of enzymes with reactant and product molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!