Mutations in GTP-cyclohydrolase 1 (GCH1) cause autosomal dominant dopa-responsive dystonia (DRD), characterized by childhood-onset foot dystonia that later generalizes. DRD patients frequently present with associated Parkinsonism. Conversely, early-onset Parkinson's disease (EOPD) patients commonly display dystonia. Herein, we investigated the frequency of GCH1 mutations in a series of 53 familial EOPD patients (21 with dystonia) and screened them for mutations in PRKN, PINK1, and DJ-1. In addition, we examined a matched EOPD patient-control series for association of common variability at the GCH1 locus and EOPD susceptibility. No GCH1 coding change or copy-number abnormality was identified in familial EOPD patients. A novel 18-bp deletion was found in the proximal promoter (two patients, one control), which is expected to knock out two regulatory elements previously shown to regulate GCH1 transcription. No association was found between GCH1 variability and risk of EOPD. Fourteen (26.4%) familial EOPD patients had homozygous or compound heterozygous PRKN mutations. PRKN-positive patients were 10 years younger than PRKN-negative patients and had a twofold higher prevalence of dystonia. This study does not support a significant role for genetic variation at the GCH1 locus in EOPD. However, our results further highlight the relevance of PRKN screening in familial EOPD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mds.22729 | DOI Listing |
Mov Disord Clin Pract
January 2025
Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, INSERM, CNRS, Paris, France.
Background: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and nonmotor symptoms, with a significant genetic component. Early-onset Parkinson's disease (EOPD), manifesting before age 45, is often linked to mutations in genes such as PARK2, PINK1, and PARK7, the latter coding for the protein DJ-1.
Objective: We present the first reported cases of EOPD carrying a previously undescribed homozygous PARK7 mutation, p.
Front Neurol
December 2024
Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
Background And Objectives: The role of N-methyl-D-aspartate receptor 2B (GRIN2B) single nucleotide polymorphisms (SNPs) in influencing the risk and progression of Parkinson's disease (PD) is still unclear. This study aimed to assess the impact of GRIN2B genotype status on PD susceptibility and symptom progression.
Methods: We enrolled 165 individuals with sporadic PD and 154 healthy controls, all of whom had comprehensive clinical data available at the start and during follow-up.
Ann Neurol
December 2024
Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan.
Objective: Variants in PRKN and PINK1 are the leading cause of early-onset autosomal recessive Parkinson's disease, yet many cases remain genetically unresolved. We previously identified a 7 megabases complex structural variant in a pair of monozygotic twins using Oxford Nanopore Technologies (ONT) long-read sequencing. This study aims to determine if ONT long-read sequencing can detect a second variant in other unresolved early-onset Parkinson's disease (EOPD) cases with 1 heterozygous PRKN or PINK1 variant.
View Article and Find Full Text PDFStem Cells
October 2024
Center for Interventional Genetics, University of California Davis Health Systems, Sacramento, CA, USA.
NPJ Parkinsons Dis
October 2024
The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.
Previous studies have established that rare biallelic SYNJ1 mutations cause autosomal recessive parkinsonism and Parkinson's disease (PD). We analyzed 8165 PD cases, 818 early-onset-PD (EOPD, < 50 years) and 70,363 controls. Burden meta-analysis revealed an association between rare nonsynonymous variants and variants with high Combined Annotation-Dependent Depletion score (> 20) in the Sac1 SYNJ1 domain and PD (Pfdr = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!