Endovascular aneurysm repair (EVAR) represents one of the greatest advances in vascular surgery over the past 50 years. In contrast to conventional aneurysm repair, EVAR requires accurate preoperative imaging and stringent postoperative surveillance. Duplex ultrasound (DUS), transesophageal echocardiography, intravascular ultrasound, computed tomography (CT) and magnetic resonance (MR), each provide useful information for patient selection, choice of endograft type and surveillance. Today most interventionists and surgeons will rely on CT or MR to assess aortic morphology, evaluate access artery patency and locate side branch orifices. However, recent developments in cross-sectional imaging, including advanced image postprocessing, multi-modality image fusion and new contrast agents have resulted in improved spatial resolution for preoperative planning. Advanced reconstruction algorithms, like dynamic CTA and MRA, provide valuable information on dynamic changes in aneurysm morphology that might have an important impact on endograft selection. During follow-up, imaging of the graft and aneurysm is of utmost importance to identify patients in need of secondary intervention. This has led to rigorous follow-up protocols including duplex ultrasound and regular CT examinations. The use of these intense follow-up protocols has recently been questioned because of high radiation dose and the frequent use of nephrotoxic contrast agents. New imaging modalities like contrast enhanced DUS, dynamic MR and dual-source CT could reduce radiation dose and obviate the need for nephrotoxic contrast. Up-to-date knowledge of non-invasive vascular imaging and image processing is crucial for EVAR planning and is essential for the development of follow-up programs involving reduced risk of harmful side effects.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!