Several quantitative trait locus analyses have suggested that grain yield and nitrogen use efficiency are well correlated with nitrate storage capacity and efficient remobilization. This study of the Arabidopsis thaliana nitrate transporter NRT1.7 provides new insights into nitrate remobilization. Immunoblots, quantitative RT-PCR, beta-glucuronidase reporter analysis, and immunolocalization indicated that NRT1.7 is expressed in the phloem of the leaf minor vein and that its expression levels increase coincidentally with the source strength of the leaf. In nrt1.7 mutants, more nitrate was present in the older leaves, less (15)NO(3)(-) spotted on old leaves was remobilized into N-demanding tissues, and less nitrate was detected in the phloem exudates of old leaves. These data indicate that NRT1.7 is responsible for phloem loading of nitrate in the source leaf to allow nitrate transport out of older leaves and into younger leaves. Interestingly, nrt1.7 mutants showed growth retardation when external nitrogen was depleted. We conclude that (1) nitrate itself, in addition to organic forms of nitrogen, is remobilized, (2) nitrate remobilization is important to sustain vigorous growth during nitrogen deficiency, and (3) source-to-sink remobilization of nitrate is mediated by phloem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768937PMC
http://dx.doi.org/10.1105/tpc.109.067603DOI Listing

Publication Analysis

Top Keywords

nitrate
11
nitrate transporter
8
transporter nrt17
8
nrt17 expressed
8
expressed phloem
8
source-to-sink remobilization
8
remobilization nitrate
8
nitrate remobilization
8
nrt17 mutants
8
older leaves
8

Similar Publications

Multifunctional composite films with regenerated cellulose prepared via acid-catalytic degradation for in-situ growth of ZnO.

Int J Biol Macromol

January 2025

School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, and MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China. Electronic address:

Regenerated cellulose is extensively utilized as a natural polymer due to its actually natural piezoelectric properties as well as renewable properties, but suffers from processing difficulties and low piezoelectric constants (d). Consequently, this work focuses on controlling the molecular weight of regenerated cellulose through pretreatment methods that promote the growth of in situ ZnO to enhance its d. Firstly, the acid-catalyzed pulp fibers (PF) and zinc nitrate hexahydrate were added in NaOH/urea solvent to effectively prepare RC/ZnO composite film via regeneration and in-situ growth.

View Article and Find Full Text PDF

Unveiling heterointerface activation effects with different titanium dioxide crystal phases for electrocatalytic nitrate-to-ammonia reduction.

J Hazard Mater

January 2025

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China. Electronic address:

Nitrate pollution poses severe risks to aquatic ecosystems and human health. The electrocatalytic nitrate reduction reaction (NITRR) offers a promising environmental and economic solution for nitrate pollution treatment and nitrogen source recovery; however, it continues to experience limited efficiency in neutral electrolytes. This study explores the heterointerface activation effects of TiO/CuO heterogeneous catalysts with rutile (R-TiO) and anatase (A-TiO) phases and reveals that R-TiO is an active crystal phase with high nitrate reduction performance.

View Article and Find Full Text PDF

Microplastics (MP) have aroused increasing concern due to the negative environmental impact. However, the impact of bio/non-biodegradable MPs on the sludge composting process has not been thoroughly investigated. This study examined antibiotic resistance genes (ARGs), virulence factors (VFs), and microbial community functions in sludge compost with the application of polylactic acid (PLA) and polypropylene (PP), using metagenomic sequencing.

View Article and Find Full Text PDF

Constructing well-dispersed active phase spontaneous redox for electrochemical nitrate reduction to ammonia.

Chem Commun (Camb)

January 2025

Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.

In this study, a distinctive multiple core-shell structure of Co nanoparticles inserted into N-doped carbon dodecahedron@Co hydroxide (Co/NCD@Co(OH)) was synthesized a spontaneous redox reaction between metallic Co and NO, ultimately materializing the fine dispersion and exposure of the active sites. The electronic interaction existing between the Co/NCD core and the Co(OH) shell brings a synergistic effect, conspicuously lessens the overpotential, and reinforces the yield-rate and faradaic efficiency of NH for electrochemical nitrate-ammonia conversion. This study underlines the spontaneous redox between the catalysts and substrate, rendering it as a synthetic strategy for designing genuine and well-dispersed active sites.

View Article and Find Full Text PDF

The electrochemical conversion of nitrate to ammonia is necessary to restore the globally perturbed nitrogen cycle. Herein, the regulated coordination of active Cu single atoms to selectively modulate the energy barriers of proton-electron transfer steps was investigated and offered valuable insights for improving the selectivity and kinetics of the NORR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!