Two novel techniques for determination of polysaccharide cross-links show that Crh1p and Crh2p attach chitin to both beta(1-6)- and beta(1-3)glucan in the Saccharomyces cerevisiae cell wall.

Eukaryot Cell

Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Department of Health andHuman Services, Bethesda, Maryland 20892, USA.

Published: November 2009

AI Article Synopsis

  • Researchers used various techniques to analyze yeast cell walls and found that two transglycosylases, Crh1p and Crh2p/Utr2p, are essential for attaching chitin to beta(1-6)glucan.
  • New methods were developed to study polysaccharide cross-links in cell walls, including the use of curdlan and in situ deacetylation of chitin to extract chitosan.
  • A reexamination revealed that prior results were impacted by contamination in the enzyme preparation, confirming that Crh1p and Crh2p facilitate the transfer of chitin to both beta(1-3) and beta(1-6)glucans in the yeast cell wall.

Article Abstract

Previous work, using solubilization of yeast cell walls by carboxymethylation, before or after digestion with beta(1-3)- or beta(1-6)glucanase, followed by size chromatography, showed that the transglycosylases Crh1p and Crh2p/Utr2p were redundantly required for the attachment of chitin to beta(1-6)glucan. With this technique, crh1Delta crh2Delta mutants still appeared to contain a substantial percentage of chitin linked to beta(1-3)glucan. Two novel procedures have now been developed for the analysis of polysaccharide cross-links in the cell wall. One is based on the affinity of curdlan, a beta(1-3)glucan, for beta(1-3)glucan chains in carboxymethylated cell walls. The other consists of in situ deacetylation of cell wall chitin, generating chitosan, which can be extracted with acetic acid, either directly (free chitosan) or after digestion with different glucanases (bound chitosan). Both methodologies indicated that all of the chitin in crh1Delta crh2Delta strains is free. Reexamination of the previously used procedure revealed that the beta(1-3)glucanase preparation used (zymolyase) is contaminated with a small amount of endochitinase, which caused erroneous results with the double mutant. After removing the chitinase from the zymolyase, all three procedures gave coincident results. Therefore, Crh1p and Crh2p catalyze the transfer of chitin to both beta(1-3)- and beta(1-6)glucan, and the biosynthetic mechanism for all chitin cross-links in the cell wall has been established.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772413PMC
http://dx.doi.org/10.1128/EC.00228-09DOI Listing

Publication Analysis

Top Keywords

cell wall
16
polysaccharide cross-links
8
crh1p crh2p
8
cell walls
8
crh1delta crh2delta
8
cross-links cell
8
chitin
7
cell
6
novel techniques
4
techniques determination
4

Similar Publications

This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.

View Article and Find Full Text PDF

sp. nov., isolated from tree bark ( Chev.) and its antioxidant activity.

Int J Syst Evol Microbiol

January 2025

Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.

View Article and Find Full Text PDF

Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.

View Article and Find Full Text PDF

Background: Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality in the western world despite the success of lipid lowering therapies, highlighting the need for novel lipid-independent therapeutic strategies. Genome-wide association studies (GWAS) have identified numerous genes associated with ASCVD that function in the vessel wall, suggesting that vascular cells mediate ASCVD, and that the genes and pathways essential for this vascular cell function may be novel therapeutic targets for the treatment of ASCVD. Furthermore, some of these implicated genes appear to function in the adventitial layer of the vasculature, suggesting these cells are able to potentiate ASCVD.

View Article and Find Full Text PDF

This study investigates the effect of 100 mg L thymol treatment on the quality of post-harvest peppers stored at 10 °C. The results showed that thymol treatment significantly reduced decay rate, reactive oxygen species (ROS) accumulation, and saturated fatty acid levels in peppers. Moreover, unsaturated fatty acids, non-enzymatic antioxidants, and antioxidant enzyme levels increased after treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!