A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Algorithms for optimal protein structure alignment. | LitMetric

Algorithms for optimal protein structure alignment.

Bioinformatics

Department of Computer Science, University of Northern Iowa, Cedar Falls, IA 50614, USA.

Published: November 2009

Motivation: Structural alignment is an important tool for understanding the evolutionary relationships between proteins. However, finding the best pairwise structural alignment is difficult, due to the infinite number of possible superpositions of two structures. Unlike the sequence alignment problem, which has a polynomial time solution, the structural alignment problem has not been even classified as solvable.

Results: We study one of the most widely used measures of protein structural similarity, defined as the number of pairs of residues in two proteins that can be superimposed under a predefined distance cutoff. We prove that, for any two proteins, this measure can be optimized for all but finitely many distance cutoffs. Our method leads to a series of algorithms for optimizing other structure similarity measures, including the measures commonly used in protein structure prediction experiments. We also present a polynomial time algorithm for finding a near-optimal superposition of two proteins. Aside from having a relatively low cost, the algorithm for near-optimal solution returns a superposition of provable quality. In other words, the difference between the score of the returned superposition and the score of an optimal superposition can be explicitly computed and used to determine whether the returned superposition is, in fact, the best superposition.

Contact: poleksic@cs.uni.edu

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btp530DOI Listing

Publication Analysis

Top Keywords

structural alignment
12
protein structure
8
alignment problem
8
polynomial time
8
returned superposition
8
alignment
5
superposition
5
algorithms optimal
4
optimal protein
4
structure alignment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!