Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Motivation: Structural alignment is an important tool for understanding the evolutionary relationships between proteins. However, finding the best pairwise structural alignment is difficult, due to the infinite number of possible superpositions of two structures. Unlike the sequence alignment problem, which has a polynomial time solution, the structural alignment problem has not been even classified as solvable.
Results: We study one of the most widely used measures of protein structural similarity, defined as the number of pairs of residues in two proteins that can be superimposed under a predefined distance cutoff. We prove that, for any two proteins, this measure can be optimized for all but finitely many distance cutoffs. Our method leads to a series of algorithms for optimizing other structure similarity measures, including the measures commonly used in protein structure prediction experiments. We also present a polynomial time algorithm for finding a near-optimal superposition of two proteins. Aside from having a relatively low cost, the algorithm for near-optimal solution returns a superposition of provable quality. In other words, the difference between the score of the returned superposition and the score of an optimal superposition can be explicitly computed and used to determine whether the returned superposition is, in fact, the best superposition.
Contact: poleksic@cs.uni.edu
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btp530 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!