A 37-year-old parturient underwent emergency cesarean delivery because of severe preeclampsia. After induction of general anesthesia, the oxygen saturation decreased. Volatile anesthetics were discontinued and examination of the anesthetic circuit and machine revealed a soda lime canister that was extremely hot. The patient was detached from the anesthetic machine and hand-ventilated with an external oxygen cylinder. The surgery was cancelled and the patient was extubated. Analysis of the cylinder connected to the anesthesia machine displayed 100% carbon dioxide. The patient developed progressive respiratory failure. Bronchoscopic examination revealed burn scars from the carina to the main bronchi. The patient died within four months of the incident.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijoa.2009.02.020 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada.
Limiting climate change to targets enshrined in the Paris Agreement will require both deep decarbonization of the energy system and the deployment of carbon dioxide removal at potentially large scale (gigatons of annual removal). Nations are pursuing direct air capture to compensate for inertia in the expansion of low-carbon energy systems, decarbonize hard-to-abate sectors, and address legacy emissions. Global assessments of this technology have failed to integrate factors that affect net capture and removal cost, including ambient conditions like temperature and humidity, as well as emission factors of electricity and natural gas systems.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada.
With over 14 million people living above 3,500 m, the study of acclimatization and adaptation to high altitude in human populations is of increasing importance, where exposure to high altitude (HA) imposes a blood oxygenation and acid-base challenge. A sustained and augmented hypoxic ventilatory response protects oxygenation through ventilatory acclimatization, but elicits hypocapnia and respiratory alkalosis. A subsequent renally mediated compensatory metabolic acidosis corrects pH toward baseline values, with a high degree of interindividual variability.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.
Coastal ecosystems play a major role in marine carbon budgets, but substantial uncertainties remain in the sources and fluxes of coastal carbon dioxide (CO). Here, we assess when, where, and how submarine groundwater discharge (SGD) releases CO to shallow coastal ecosystems. Time-series observations of dissolved CO and radon (Rn, a natural groundwater tracer) across 40 coastal systems from 14 countries revealed large SGD-derived CO fluxes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.
Perfluorinated compounds (PFCs) are emerging environmental pollutants characterized by their extreme stability and resistance to degradation. Among them, tetrafluoromethane (CF) is the simplest and most abundant PFC in the atmosphere. However, the highest C─F bond energy and its highly symmetrical structure make it particularly challenging to decompose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!