The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC) are widely used in many personal care products. Knowledge concerning the fate of these two compounds in different environmental matrices is scarce. In this study, the fate of TCS and TCC in soil following direct addition, or when residues were applied via either liquid municipal biosolids (LMB) or dewatered municipal biosolids (DMB) was investigated in laboratory dissipation experiments and under outdoor conditions using radioisotope methods. In laboratory incubations, (14)C-TCC or (14)C-TCS was added to microcosms containing a loam soil and the rate of (14)CO(2) accumulation and loss of solvent-extractable (14)C were determined during incubation at 30 degrees C. Compared to when TCC or TCS was added directly to soil, both chemicals were mineralized more rapidly when applied in LMB, and both were mineralized more slowly when applied in DMB. The application matrix had no effect on the rate of removal of extractable residues. In field experiments, parent compounds were incorporated directly in soil, incorporated via LMB, or a single aggregate of amended DMB was applied to the soil surface. During the experiment soil temperatures ranged from 20 degrees C to 10 degrees C. Dissipation was much slower in the field than in the laboratory experiments. Removal of non-extractable residues was faster in the presence of LMB than the other treatments. Recovery of extractable and non-extractable residues suggested that there was little atmospheric loss of (14)C. Triclocarban readily formed non-extractable residues with DMB whereas TCS did not. Overall, this study has identified that both the pathways and the kinetics of TCS and TCC dissipation in soil are different when the chemicals are carried in biosolids compared to when these chemicals are added directly to the soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2009.08.003DOI Listing

Publication Analysis

Top Keywords

directly soil
12
non-extractable residues
12
soil
9
tcs tcc
8
municipal biosolids
8
soil chemicals
8
tcs
5
residues
5
impact biosolids
4
biosolids persistence
4

Similar Publications

The impacts of degradation and deforestation on tropical forests are poorly understood, particularly at landscape scales. We present an extensive ecosystem analysis of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing responses from 82 variables categorized into four ecological levels spanning a broad suite of ecosystem properties: (i) structure and environment, (ii) species traits, (iii) biodiversity, and (iv) ecosystem functions. Responses were highly heterogeneous and often complex and nonlinear.

View Article and Find Full Text PDF

The biomethanization of lignocellulosic wastes remains an inefficient and complex process due to lignin structures that hinder the hydrolysis step, therefore, some treatments are required. This work describes the addition of an enriched microbial consortium in the biomethanization of rice straw. The experiment was carried out in lab batch reactors following two strategies: (i) pretreatment of rice straw for 48 h using the enriched microbial consortium (dilution 1:100), and (ii) addition of this enriched microbial consortium (dilution 1:100) directly to the anaerobic reactors (bioaugmentation).

View Article and Find Full Text PDF

Heavy Metals Alter the Anti-cancer Potency of Medicinal Plants.

Anticancer Agents Med Chem

January 2025

Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India.

This review investigates the outcome of heavy metal contamination on the anti-cancer properties of medicinal plants. Heavy metal pollution is a significant environmental concern globally, often found in soil and water due to industrial activities. Therapeutic plants are recognized because of their therapeutic attributes and their ability to absorbing these contaminants.

View Article and Find Full Text PDF

Improving the quality of degraded coastal saline-alkali soil and promoting plant growth are key challenges in the restoration of ecological functions in coastal regions. Organic ameliorants such as effective microbial (EM) agent, biochar, and organic compost have been proposed as sustainable solutions, but limited research has explored the combined effects of these amendments. This study investigates five organic improvement strategies: individual applications of EM, corn straw biochar (CSB), and sewage sludge-reed straw compost (COM), along with combined treatments of CSB + EM and COM + EM, on Sesbania growth in a pot experiment.

View Article and Find Full Text PDF

Exploring the elevation distribution characteristics, biomass allocation strategies, and the effects of elevation, soil factors, and functional traits on the biomass of (Gand.) Holub is of great significance for the production, development, utilization, and protection of the medicinal material resources. In this study, we investigated the biomass and functional traits of the root, stem, leaf, and flower of , analyzing their elevation distribution patterns, allometric growth trajectories, and their correlations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!