According to the "nocturnal visual predation hypothesis" (NVPH), the convergent eyes and orbits of primates result from selection for improved stereoscopic depth perception to facilitate manual capture of prey at night. Within primates, haplorhines share additional derived orbital morphologies, including a postorbital septum and greater orbital convergence than any other mammalian clade. While the homology and function of the haplorhine septum remain controversial, experimental data suggest that septa evolved to inhibit mechanical disturbance of the orbital contents by the anterior temporalis muscle during mastication. According to this "insulation hypothesis," haplorhines are particularly susceptible to disruption of the orbital contents because they have large and highly convergent eyes and orbits. However, comparative tests of the insulation hypothesis have been hindered by the morphological uniqueness of the haplorhine septum among mammals. Among birds, owls (Strigiformes) exhibit an expanded postorbital process that may be functionally analogous to the haplorhine septum. Here we present a comparative analysis of orbital morphology in 103 avian species that tests two hypotheses: (1) large, convergent orbits are associated with nocturnal visual predation, and (2) the strigiform postorbital process and haplorhine postorbital septum similarly function to insulate the eyes from contractions of mandibular adductors. Strigiforms, as nocturnal visual predators, possess relatively large orbits and exhibit the highest degree of orbital convergence in our sample. Notably, orbital convergence does not scale with orbit size in birds as in mammals. Owls are also unique among the birds examined in possessing extensive, plate-like postorbital processes that largely isolate the orbits from the temporal fossae. Furthermore, dissections of four owl species demonstrate that the expanded strigiform postorbital process deflects the path of mandibular adductors around the eye's inferolateral margin. These findings provide further comparative support for both the NVPH and the insulation hypothesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhevol.2009.04.010 | DOI Listing |
J Chem Theory Comput
January 2025
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
Green's function theory has emerged as a powerful many-body approach not only in condensed matter physics but also in quantum chemistry in recent years. We have developed a new all-electron implementation of the BSE@GW formalism using numeric atom-centered orbital basis sets (Liu, C. 2020, 152, 044105).
View Article and Find Full Text PDFCureus
December 2024
Department of Ophthalmology, University General Hospital of Heraklion, Heraklion, GRC.
Orbital apex lesions represent a clinical challenge since they are difficult to remove surgically and may induce significant functional defects. The orbital apex is an area of convergence of neurovascular elements passing through the various local osseous foramina and the congestion of several critical anatomical structures in a confined space increases the risk of intraoperative complications. Radiotherapy is an alternative treatment option in such cases but may also induce radiation toxicity.
View Article and Find Full Text PDFJ Mol Model
January 2025
College of Electronics and Information, Xi'an Polytechnic University, Xian, People's Republic of China.
Context: The two-dimensional graphene/MoTe heterostructure holds extensive potential applications in optoelectronic devices, sensors, and catalysts. To expand its optical applications, this study systematically investigates the adsorption stability of metal atoms (Au, Pt, Pd, and Fe) on the graphene/MoTe and their influence on its optoelectronic properties employing first-principles methods. The findings indicate that after the adsorption of Au and Pd, the structure retains its direct bandgap properties, while the adsorption of Pt and Fe exhibits indirect bandgap characteristics.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China.
As the Internet of Things (IoT) expands globally, the challenge of signal transmission in remote regions without traditional communication infrastructure becomes prominent. An effective solution involves integrating aerial, terrestrial, and space components to form a Space-Air-Ground Integrated Network (SAGIN). This paper discusses an uplink signal scenario in which various types of data collection sensors as IoT devices use Unmanned Aerial Vehicles (UAVs) as relays to forward signals to low-Earth-orbit satellites.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
Traditionally, excitation energies in coupled-cluster (CC) theory have been calculated by solving the CC Jacobian eigenvalue equation. However, based on our recent work [Jørgensen et al., Sci.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!