Conceptual and empirical approaches to the study of the role of asymmetric frontal cortical activity in emotional processes are reviewed. Although early research suggested that greater left than right frontal cortical activity was associated with positive affect, more recent research, primarily on anger, suggests that greater left than right frontal cortical activity is associated with approach motivation, which can be positive (e.g., enthusiasm) or negative in valence (e.g., anger). In addition to reviewing this research on anger, research on guilt, bipolar disorder, and various types of positive affect is reviewed with relation to their association with asymmetric frontal cortical activity. The reviewed research not only contributes to a more complete understanding of the emotive functions of asymmetric frontal cortical activity, but it also points to the importance of considering motivational direction as separate from affective valence in psychological models of emotional space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopsycho.2009.08.010 | DOI Listing |
Alzheimers Dement
January 2025
Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.
Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by damage to cortical circuits. However, the mechanisms underlying AD-associated changes in long-range circuits remain poorly understood.
Methods: In this study, we used viral tracing and fluorescence micro-optical sectioning tomography (fMOST) imaging to investigate whole-brain changes in the input circuit of the frontal cortex of 5×FAD mice.
Cureus
January 2025
Department of Research, Department of Regenerative Medicine, Rinaldi Fontani Foundation, Florence, ITA.
An 88-year-old woman presented with a longstanding history of dizziness, tremors, and progressive mental and physical decline, significantly impairing her mobility and autonomy. Recently discharged from an ICU, the patient required extensive support for daily activities. Diagnostic evaluations, including EEG and analysis, revealed irregular frequency peaks and altered cortical activity, particularly in the frontal and prefrontal regions.
View Article and Find Full Text PDFSci Rep
January 2025
Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Understanding the neural mechanisms underlying emotional processing is critical for advancing neuroscience and mental health interventions. This study examined these mechanisms by analyzing EEG connectivity patterns across different brain regions while participants evoked various emotions. After applying independent component analysis (ICA) to eliminate non-cortical activity, we assessed frequency-specific connectivity patterns using coherence, Granger causality, and graph theoretical measures to evaluate both functional and effective connectivity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Sport & Health, Exercise Science & Neuroscience Unit Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Germany.
Anterior cruciate ligament injuries (ACLi) impact football players substantially leading to performance declines and premature career endings. Emerging evidence suggests that ACLi should be viewed not merely as peripheral injuries but as complex conditions with neurophysiological aspects. The objective of the present study was to compare kicking performance and associated cortical activity between injured and healthy players.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA.
Obesity and associated metabolic disturbances worsen brain ischemia outcome. High fat diet (HFD)-fed mice are obese and have cerebrovascular remodeling and worsened brain ischemia outcome. We determined whether HFD-induced cerebrovascular remodeling impaired reperfusion to the ischemic penumbra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!