Acceleration of the ATP-binding rate of F1-ATPase by forcible forward rotation.

FEBS Lett

Institute of Scientific and Industrial Science, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.

Published: October 2009

AI Article Synopsis

  • F1-ATPase is a motor protein that can produce ATP by reversing its rotary motion, impacting how it facilitates catalytic reactions.
  • Research shows that the rate at which F1 binds ATP increases when the rotor rotates forward, suggesting that rotation enhances its binding affinity for ATP.
  • This study provides new insights into how the rotational angle of F1 influences its catalytic activity and ATP production.

Article Abstract

F1-ATPase (F1) is a reversible ATP-driven rotary motor protein. When its rotary shaft is reversely rotated, F1 produces ATP against the chemical potential of ATP hydrolysis, suggesting that F1 modulates the rate constants and equilibriums of catalytic reaction steps depending on the rotary angle of the shaft. Although the chemomechanical coupling scheme of F1 has been determined, it is unclear how individual catalytic reaction steps depend on its rotary angle. Here, we report direct evidence that the ATP-binding rate of F1 increases upon the forward rotation of the rotor, and its binding affinity to ATP is enhanced by rotation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2009.08.042DOI Listing

Publication Analysis

Top Keywords

atp-binding rate
8
forward rotation
8
catalytic reaction
8
reaction steps
8
rotary angle
8
acceleration atp-binding
4
rate f1-atpase
4
f1-atpase forcible
4
forcible forward
4
rotation f1-atpase
4

Similar Publications

Computational Analysis of MDR1 Variants Predicts Effect on Cancer Cells via their Effect on mRNA Folding.

PLoS Comput Biol

December 2024

Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, Israel.

The P-glycoprotein efflux pump, encoded by the MDR1 gene, is an ATP-driven transporter capable of expelling a diverse array of compounds from cells. Overexpression of this protein is implicated in the multi-drug resistant phenotype observed in various cancers. Numerous studies have attempted to decipher the impact of genetic variants within MDR1 on P-glycoprotein expression, functional activity, and clinical outcomes in cancer patients.

View Article and Find Full Text PDF

Introduction: is the most prevalent enteric protozoan parasite causing infectious diarrhea in neonatal calves worldwide with a direct negative impact on their health and welfare. This study utilized next-generation sequencing (NGS) to deepen our understanding of intestinal epithelial barriers and transport mechanisms in the pathophysiology of infectious diarrhea in neonatal calves, which could potentially unveil novel solutions for treatment.

Methods: At day 1 of life, male Holstein-Friesian calves were either orally infected (n = 5) or not (control group, n = 5) with oocysts (in-house strain LE-01-Cp-15).

View Article and Find Full Text PDF

Breast cancer is one of the most common cancers among women. Nowadays postoperative adjuvant chemotherapy is the mainstay for clinical treatment of breast cancer. However, the emergence of multidrug resistance (MDR) in breast cancer has become a main reason for the failure of clinical chemotherapy.

View Article and Find Full Text PDF

Abcb1 is involved in the efflux of trivalent inorganic arsenic from brain microvascular endothelial cells.

Ecotoxicol Environ Saf

December 2024

Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Baojian Road, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Baojian Road, Harbin, Heilongjiang 150081, China. Electronic address:

Arsenic (As) can penetrate brain tissue through the blood-brain barrier (BBB), and the ATP-binding cassette subfamily B member 1 (Abcb1) has been shown to facilitate the transport of inorganic arsenic (iAs) in animal liver, small intestine, and yeast. However, the relationship between Abcb1 and BBB has not been reported, and the mechanism of brain microvascular endothelial cells Abcb1 on the transport of iAs needs to be further studied. Increased arsenic levels were observed in mice exposed to 25 mg/L or 50 mg/L of sodium arsenite (NaAsO) in drinking water, and both arsenic uptake and efflux were detected in bEnd.

View Article and Find Full Text PDF

The association of ABC proteins with multidrug resistance in cancer.

Biochim Biophys Acta Mol Cell Res

November 2024

Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil. Electronic address:

Multidrug resistance (MDR) poses one of the primary challenges for cancer treatment, especially in cases of metastatic disease. Various mechanisms contribute to MDR, including the overexpression of ATP-binding cassette (ABC) proteins. In this context, we reviewed the literature to establish a correlation between the overexpression of ABC proteins and MDR in cancer, considering both in vitro and clinical studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!