This study investigates the removal efficiency of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) by the APCDs of an iron ore sintering plant, an electrostatic precipitator (ESP) and a wetfine scrubbing system (WS). The removal efficiencies of the ESP on the total PCDD/Fs concentration and the total PCDD/Fs I-TEQ concentration are 44.3% and 41.4%, respectively, while those of the WS are 66.7% and 68.4%, respectively, but the vapor/solid phase distribution changes after APCDs abatement. At ESP inlet, the PCDD/Fs account for 31.2% in vapor phase and for 68.8% in particulate phase while, at ESP outlet, the PCDD/Fs account for 63.3% in vapor phase and for 36.7% in solid phase. The ESP removes effectively solid-phase PCDD/Fs for its effectiveness to capture the particulate while it is ineffective in removing vapor-phase PCDD/Fs. It, on the contrary, increase for the vaporization within the ESP, especially for these congeners with a lower chlorination degree, and for the PCDD/Fs "stripping" from particulate to gas-phase during the sampling. At WS inlet, the PCDD/Fs account for 63.3% in vapor phase and for 36.7% in solid phase while, at WS outlet, the PCDD/Fs account for 21.4% in vapor phase and for 78.6% in solid phase. Considering that WS outlet temperature is about 40 degrees C, the PCDD/Fs vapor-phase condense to particles: therefore, even if the particulate is removed by WS, the final result is that PCDD/Fs percentage decreases in vapor-phase and increases in solid-phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2009.08.019 | DOI Listing |
Sci Total Environ
December 2024
Department of Environmental Science, Rutgers, the State University of New Jersey, United States of America. Electronic address:
Polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) are contaminants of concern in the New York/New Jersey Harbor and in the organisms of the Newtown Creek Superfund site, which lies within the harbor. Because PCDD/Fs are never intentionally produced, identifying their sources can be challenging. In this work, sources of PCDD/Fs to the sediment of Newtown Creek were investigated using Positive Matrix Factorization (PMF) to analyze two data sets containing data on concentrations of (1) PCDD/Fs and (2) PCDD/Fs plus polychlorinated biphenyls (PCBs).
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan. Electronic address:
Sci Rep
October 2024
Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
The Chinese mitten crab (Eriocheir sinensis) holds significant importance as a popular aquaculture food source; however, there are concerns about its potential contamination with polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) from both food and aquatic environment. To assess the associated health risks and identify potential sources of contamination in crabs, a comprehensive investigation was conducted, including a total of 70 samples from the crab food web. The results demonstrated that crabs predominantly exhibited elevated concentrations of PCBs and dl-PCBs, with mean concentrations of 12 207 ± 11 962 pg g and 554 ± 203 pg g, respectively, while PCDD/Fs concentrations were comparatively lower at 20 ± 17 pg g.
View Article and Find Full Text PDFMar Pollut Bull
October 2024
Institute of Ocean Technology and Marine Affairs, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan. Electronic address:
The abundance and fate of microplastics (MPs) in wastewater treatment plants (WTPs) has been reported extensively. However, in the wastewater, the extent to which hazardous chemicals such as persistent organic pollutants (POPs) accumulated by MPs not been clearly explored. In this study, MPs was sampled from influents and effluents in WTPs to characterize POPs in sorption within MPs.
View Article and Find Full Text PDFEnviron Pollut
June 2024
Zhejiang Ecowell Energy Management Technology Co., Ltd. Hangzhou, Zhejiang, 310012, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!