Renal ischemia-reperfusion injury results in oxidative stress-induced alterations in barrier function. Activation of the mitogen-activated protein (MAP) kinase pathway during recovery from oxidative stress may be an effector of oxidant-induced tight junction reorganization. We hypothesized that tight junction composition and barrier function would be perturbed during recovery from oxidative stress. We developed a model of short-term H(2)O(2) exposure followed by recovery using Madin Darby canine kidney (MDCK II) cells. H(2)O(2) perturbs barrier function without a significant cytotoxic effect except in significant doses. ERK-1/2 and p38, both enzymes of the MAP kinase pathway, were activated within minutes of exposure to H(2)O(2). Transient exposure to H(2)O(2) produced a biphasic response in the transepithelial electrical resistance (TER). An initial drop in TER at 6 h was followed by a significant increase at 24 h. Inhibition of ERK-1/2 activation attenuated the increase in TER observed at 24 h. Expression of occludin initially decreased, followed by partial recovery at 24 h. In contrast, claudin-1 levels decreased and failed to recover at 24 h. Claudin-2 levels were markedly decreased at 24 h; however, inhibition of ERK-1/2 activation was protective. Occludin and claudin-1 localization at the apical membrane on immunofluorescence images was fragmented at 6 h after H(2)O(2) exposure with subsequent recovery of appropriate localization by 24 h. MDCK II cell recovery after H(2)O(2) exposure is associated with functional and structural modifications of the tight junction that are mediated in part by activation of the MAP kinase enzymes ERK-1/2 and p38.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783357PMC
http://dx.doi.org/10.1016/j.freeradbiomed.2009.08.024DOI Listing

Publication Analysis

Top Keywords

tight junction
16
barrier function
12
map kinase
12
h2o2 exposure
12
kinase pathway
8
recovery oxidative
8
oxidative stress
8
erk-1/2 p38
8
exposure h2o2
8
inhibition erk-1/2
8

Similar Publications

Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) is a neurodegenerative disease caused by mutations in the gene encoding transthyretin (TTR). Despite amyloid deposition being pathognomonic for diagnosis, this pathology in nervous tissues cannot fully account for nerve degeneration, implying additional pathophysiology for neurodegeneration, which, however, has not yet been fully elucidated. In this study, neuroinflammation in ATTRv-PN was investigated by examining nerve morphometry, the blood-nerve barrier, and macrophage infiltration in the sural nerves of ATTRv-PN patients and the sciatic nerves of a complementary mouse system, i.

View Article and Find Full Text PDF

Curcuminoids, found in turmeric ( L.), include curcumin (CUR), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Although CUR and DMC are well-studied, the anti-inflammatory effects of BDMC remain less explored.

View Article and Find Full Text PDF

SLAMF8 Disrupts Epithelial Barrier in Chronic Rhinosinusitis with Nasal Polyps via M1 Macrophage Polarization.

Ann Allergy Asthma Immunol

January 2025

Department of Otorhinolaryngology Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China. Electronic address:

Background: Recent studies show that M1 macrophages accumulate predominantly in non-eosinophilic chronic rhinosinusitis with nasal polyps (neCRSwNP). However, the precise mechanisms regulating M1 macrophages and their impact on the epithelial barrier remain unclear.

Objective: We aim to investigate the expression and regulatory role of SLAMF8, a molecule exclusively expressed in myeloid cells, in M1 macrophage polarization and its potential contribution to neCRSwNP development.

View Article and Find Full Text PDF

Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!