In the past decade, single-molecule force spectroscopy has provided new insights into the key interactions stabilizing folded proteins. A few recent studies probing the effects of ligand binding on mechanical protein stability have come to quite different conclusions. While some proteins seem to be stabilized considerably by a bound ligand, others appear to be unaffected. Since force acts as a vector in space, it is conceivable that mechanical stabilization by ligand binding is dependent on the direction of force application. In this study, we vary the direction of the force to investigate the effect of ligand binding on the stability of maltose binding protein (MBP). MBP consists of two lobes connected by a hinge region that move from an open to a closed conformation when the ligand maltose binds. Previous mechanical experiments, where load was applied to the N and C termini, have demonstrated that MBP is built up of four building blocks (unfoldons) that sequentially detach from the folded structure. In this study, we design the pulling direction so that force application moves the two MBP lobes apart along the hinge axis. Mechanical unfolding in this geometry proceeds via an intermediate state whose boundaries coincide with previously reported MBP unfoldons. We find that in contrast to N-C-terminal pulling experiments, the mechanical stability of MBP is increased by ligand binding when load is applied to the two lobes and force breaks the protein-ligand interactions directly. Contour length measurements indicate that MBP is forced into an open conformation before unfolding even if ligand is bound. Using mutagenesis experiments, we demonstrate that the mechanical stabilization effect is due to only a few key interactions of the protein with its ligand. This work illustrates how varying the direction of the applied force allows revealing important details about the ligand binding mechanics of a large protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2009.08.066 | DOI Listing |
Sci Rep
January 2025
Department of Pharmacology and Toxicology College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
Exposure to anthracene can cause skin and eye irritation, respiratory issues, and potential long-term health risks, including carcinogenic effects. It is also toxic to aquatic and human life and has the potential for long-term environmental contamination. This study aims to alleviate the adverse environmental effects of anthracene through fungal degradation, focusing on bioremediation approaches using bioinformatics.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, Madanapalle Institute of Technology & Science, Kadiri Road, Angallu, Madanapalle, 517325, Annamayya District, Andhra Pradesh, India.
A new Rhodamine functionalised Schiff Base sensor 3',6'-bis(diethylamino)-2-((4-hydroxybenzylidene)amino)spiro[isoindoline-1,9'-xanthen]-3-one (SBRB1) was designed and synthesized. The recognition ability of sensor SBRB1 towards Hg was studied by using UV-Vis and fluorescence spectroscopy. The fluorescence results showed that the sensor SBRB1 has specific selectivity as well as sensitivity towards Hg among other competitive metal ions as the fluorescence intensity at 479 nm quenched only in the presence of Hg.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India.
Cancer cells sense and respond to the extracellular environment, with differences in nanoscale ligand spacing affecting their behavior. Emerging reports show that stretch/ultrasound-mediated mechanical forces promote apoptosis (mechanoptosis) by increasing myosin contractility. Since myosin contractility is critical for nanoscale-ligand spacing-regulated cell behavior, we study the effect of ligand spacing on mechanoptosis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India. Electronic address:
The multi-target directed ligands (MTDLs) strategy has been evolved as the propitious approach for the development of therapeutics for Alzheimer's disease (AD). In an earlier report, we described the novel series of chalcone derivatives bearing N-aryl piperazine scaffold as MTDLs for the treatment of AD. Herein, we report the lead optimization of the series culminating in potent, multi-targeting compounds (32-57), evaluated through in-vitro and in-vivo biological studies.
View Article and Find Full Text PDFMucosal Immunol
January 2025
Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center Pittsburgh PA USA; Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA. Electronic address:
Host response aimed at eliminating the infecting pathogen, as well as the pathogen itself, can cause tissue injury. Tissue injury leads to the release of a myriad of cellular components including mitochondrial DNA, which the host senses through pattern recognition receptors. How the sensing of tissue injury by the host shapes the anti-pathogen response remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!