Methoxy poly(ethylene glycol)-block-oligo(l-aspartic acid)-block-poly(epsilon-caprolactone) with four aspartic acid groups was synthesized with a molecular weight and M(w)/M(n) of 8930 and 1.22. Polymeric micelles were formed by dialysis and stabilized by electrostatic interactions between the carboxylic acid groups and calcium cations. The critical micelle concentration of mPEG-Asp-PCL was determined to be 0.078 mg/mL. At 0.02 mg/mL, the dissociation of micelles without ionic stabilization formed an opaque, phase-separated solution, while the stabilized micelles under the same conditions showed structural stability through ionic stabilization. The paclitaxel-loading and efficiency were 8.7% and 47.6%, respectively, and the drug loading increased the mean diameter from 73.0 nm to 87 nm, which was increased further to 96 nm after ionic fixation. Rapid releases of approximately 65% of the encapsulated paclitaxel from a non-stabilized micelle and 45% from a stabilized micelle were observed in the first 24h at pH 7.4 in a PBS solution containing 0.1 wt% Tween 80. The stabilized micelles then showed a sustained, slow release pattern over a couple of weeks, while the profile from the non-stabilized micelles reached a plateau at approximately 75% after 50h. The enhanced micelle stability independent of concentration through ionic stabilization opens a way for preparing long circulating delivery systems encapsulating water-insoluble drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2009.08.006 | DOI Listing |
Nanoscale
January 2025
Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.
Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
In the field of organic electronics and optics, there is rapidly growing interest in enhancing both charge transport and the ion transport properties of semiconductors, particularly in light of recent emerging technologies such as organic electrochemical transistors (OECTs) and switchable organic nanoantennas. Herein, we propose a universal method for internalizing the ionic transport properties of conventional polymer semiconductors. The incorporation of a tetrafluorophenyl azide-based photochemical cross-linker with a tetraethylene glycol bridge into poly(3-hexylthiophene) (P3HT) significantly enhances the performance and operational stability of ion-gating devices.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China.
Sluggish redox kinetics and dendrite growth perplex the fulfillment of efficient electrochemistry in lithium-sulfur (Li-S) batteries. The complicated sulfur phase transformation and sulfur/lithium diversity kinetics necessitate an all-inclusive approach in catalyst design. Herein, a compatible mediator with nanoscale-asymmetric-size configuration by integrating Co single atoms and defective CoTe (Co-CoTe@NHCF) is elaborately developed for regulating sulfur/lithium electrochemistry synchronously.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Military Institute of Medicine - National Research Institute, Szaserow 128, 04-141 Warsaw, Poland. Electronic address:
Metallofullerenols and fullerenols have attracted attention due to their remarkable ability to interact with various biologically relevant molecules, paving the way for biomedical applications, ranging from medical imaging techniques to drug carriers, acting with increased efficiency and reduced side effects. In this work, we investigated the effects of two fullerene derivatives, Gd@C(OH) and C(OH), on erythrocyte membrane components under oxidative stress conditions induced by 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) as a source of peroxyl radicals. The results demonstrated that gadolinium encapsulation within the fullerene cage enhanced the electron affinity of Gd@C(OH), resulting in stronger antioxidant activity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!