AI Article Synopsis

  • TCF7L2, a transcription factor related to Wnt/beta-catenin signaling, was studied for its potential links to breast and ovarian cancers due to its known variants associated with Type 2 diabetes and certain cancers.
  • Two case-control studies at the Mayo Clinic involving nearly 2,600 participants showed no significant associations between the TCF7L2 variant (rs12255372) and the risk of breast or ovarian cancer.
  • Despite the biological relevance of the Wnt/beta-catenin pathway, the research found no evidence supporting a connection between the TCF7L2 SNP and either type of cancer.

Article Abstract

Background: TCF7L2 is a transcription factor involved in Wnt/beta-catenin signaling which has a variant known to be associated with risk of Type 2 diabetes and, in some studies, with risk of certain cancers, including familial breast cancer. No studies of ovarian cancer have been reported to date.

Methods: Two clinic-based case-control studies at the Mayo Clinic were assessed including 798 breast cancer cases, 843 breast cancer controls, 391 ovarian cancer cases, and 458 ovarian cancer controls. Genotyping at TCF7L2 rs12255372 used a 5' endonuclease assay, and statistical analysis used logistic regression among participants as a whole and among a priori-defined subsets.

Results: No associations with risk of breast or ovarian cancer were observed (ordinal model, p = 0.62 and p = 0.75, respectively). In addition, no associations were observed among sub-groups defined by age, BMI, family history, stage, grade, histology, or tumor behavior.

Conclusion: Although the biology of the Wnt/beta-catenin signaling pathway and prior association between rs12255372 and numerous phenotypes warranted examination of this TCF7L2 SNP, no compelling evidence for association with breast or ovarian cancer was observed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749057PMC
http://dx.doi.org/10.1186/1471-2407-9-312DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
24
breast ovarian
12
breast cancer
12
cancer
9
risk breast
8
wnt/beta-catenin signaling
8
cancer cases
8
cancer controls
8
cancer observed
8
breast
6

Similar Publications

Prognostic significance of serum complement activation, neutrophil extracellular traps and extracellular DNA in newly diagnosed epithelial ovarian cancer.

Gynecol Oncol

January 2025

Departments of Internal Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States of America; Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.

Purpose: We observed that the tumor microenvironment (TME) in metastatic epithelial ovarian cancer (EOC) and in other solid tumors can reprogram normal neutrophils to acquire a complement-dependent suppressor phenotype characterized by inhibition of stimulated T cell activation. This study aims to evaluate whether serum markers of neutrophil activation and complement at diagnosis of EOC would be associated with clinical outcomes.

Experimental Design: We conducted a two-center prospective study of patients with newly diagnosed EOC (N = 188).

View Article and Find Full Text PDF

Objective: Therapeutic interventions for epithelial ovarian cancer (EOC) have increased greatly over the last decade but improvements outside of biomarker selected therapies have been limited. There remains a pressing need for more effective treatment options that can prolong survival and enhance the quality of life of patients with EOC. In contrast to the significant benefits of immunotherapy with immune checkpoint inhibitors (CPI) seen in many solid tumors, initial experience in EOC suggests limited efficacy of CPIs monotherapy.

View Article and Find Full Text PDF

B7-H3 (CD276), a member of the B7-family of immune checkpoint proteins, has been shown to have immunological and non-immunological effects promoting tumorigenesis [1, 2] and expression correlates with poor prognosis for many solid tumors, including cervical, ovarian and breast cancers [3-6]. We recently identified a tumor-cell autochthonous tumorigenic role for dimerization of the 4Ig isoform of B7-H3 (4Ig-B7-H3) [7], where 4Ig-B7-H3 dimerization activated tumor-intrinsic cellular proliferation and tumorigenesis pathways, providing a novel opportunity for therapeutic intervention. Herein, a live cell split-luciferase complementation strategy was used to visualize 4Ig-B7-H3 homodimerization in a high-throughput small molecule screen (HTS) to identify modulators of this protein-protein interaction (PPI).

View Article and Find Full Text PDF

Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.

View Article and Find Full Text PDF

Background: There has been limited success of cancer immunotherapies in the treatment of ovarian cancer (OvCa) to date, largely due to the immunosuppressive tumour microenvironment (TME). Tumour-associated macrophages (TAMs) are a major component of both the primary tumour and malignant ascites, promoting tumour growth, angiogenesis, metastasis, chemotherapy resistance and immunosuppression. Differential microRNA (miRNA) profiles have been implicated in the plasticity of TAMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!