*In transgenic calli and different tissues of Arabidopsis thaliana plants, the in trans silencing capacity of a 35S-beta-glucuronidase (GUS) hairpin RNA construct was investigated on a target GUS gene, under the control of the 35S, a WRKY or several cell cycle-specific promoters. *GUS histochemical staining patterns were analyzed in all tissues of the parental lines and supertransformants harboring the hairpin construct. Quantitative GUS activity measurements determined GUS suppression by a 35S-GUS hairpin or inverted repeated GUS transgenes in leaves and calli. *In some supertransformants, GUS-based staining disappeared in all tissues, including calli. In most supertransformants, however, a significant reduction was found in mature roots and leaves, but residual GUS activity was observed in the root tips, young leaves and calli. In leaves of most hairpin RNA supertransformants, the GUS activity was reduced by c. 1000-fold or more, but, in derived calli, generally by less than 200-fold. The silencing efficiency of inverted repeated sense transgenes was similar to that of a hairpin RNA construct in leaves, but weaker in calli. *These results imply that the tissue type, nature of the silencing inducer locus and the differential expression of the targeted gene codetermine the silencing efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8137.2009.03011.x | DOI Listing |
Netw Neurosci
December 2024
Department of Cognition, Development and Education Psychology, University of Barcelona, Barcelona, Spain.
Memories are thought to use coding schemes that dynamically adjust their representational structure to maximize both persistence and efficiency. However, the nature of these coding scheme adjustments and their impact on the temporal evolution of memory after initial encoding is unclear. Here, we introduce the Segregation-to-Integration Transformation (SIT) model, a network formalization that offers a unified account of how the representational structure of a memory is transformed over time.
View Article and Find Full Text PDFJ Med Case Rep
December 2024
Department of Internal Medicine, Woldia Comprehensive Specialized Hospital, Woldia, Ethiopia.
Introduction: Aluminum phosphide is a cheap and commonly used rodenticide that is also an effective solid fumigant and frequently used for grain preservation. The pill contains around 44% inert elements (ammonium carbonate) to avoid disintegration of the tablet, while the rest (about 56%) is aluminum phosphide. Because it is freely available on the market, it is one of the commonly used agents for self-poisoning in different parts of the developing world.
View Article and Find Full Text PDFHGG Adv
December 2024
International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México. Electronic address:
Repeated sequences spread throughout the genome play important roles in shaping the structure of chromosomes and facilitating the generation of new genomic variation through structural rearrangements. Several mechanisms of structural variation formation use shared nucleotide similarity between repeated sequences as substrate for ectopic recombination. We performed genome-wide analyses of direct and inverted intrachromosomal repeated sequence pairs with >200bp and >80% sequence identity in three human genome assemblies, GRCh37, GRCh38, and the T2T-CHM13 alternate assembly.
View Article and Find Full Text PDFBioinform Biol Insights
December 2024
Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
Genomic repeats are functionally ubiquitous structural units found in all genomes. Studying these repeats of different origins is essential for understanding the evolution and adaptation of a given organism. These repeating patterns have manifold signatures and structures with varying degrees of homology, making their identification challenging.
View Article and Find Full Text PDFReplicative helicases are assembled on chromosomes by helicase loaders before initiation of DNA replication. Here, we investigate mechanisms used by the bacterial DnaB replicative helicase and the DciA helicase loader. In the present structure of the DnaB-ssDNA•ATPγS complex, the amino-terminal (NTD) tier, previously found as an open spiral in a GDP•AlF4 complex, was observed to adopt a closed planar arrangement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!