In Japan, the most common illicit drug is methamphetamine. It is possible to trace the origin of this drug by analyzing its organic and inorganic impurities and/or byproducts using several methods, such as GC, GC/MS, and inductively coupled plasma-mass spectrometry (ICP-MS). As reported here, one other method includes comparison of the striation lines of polymer sheet layers from packaging using a polarized light method. Other alternative methods include analyzing the heat sealer pattern, layer thickness surface characteristics, and/or components of polymer sheet layers using infrared spectroscopy. Several of these alternative methods were used to analyze the origins of 29 packages confiscated from three regions over a 1000 km distance in Japan. Results indicated that packages seized from different regions had some polymer sheet layers which contained striation lines and heat sealer patterns that were similar.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1556-4029.2009.01149.xDOI Listing

Publication Analysis

Top Keywords

polymer sheet
12
sheet layers
12
illicit drug
8
drug methamphetamine
8
comparison striation
8
striation lines
8
alternative methods
8
heat sealer
8
illegal route
4
route estimation
4

Similar Publications

Interfacial functionalization and capillary force welding of enhanced silver nanowire-cellulose nanofiber composite electrodes for electroluminescent devices.

Int J Biol Macromol

December 2024

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.

The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared.

View Article and Find Full Text PDF

Assessment of surface treatment methods for strengthening the interfacial adhesion in CARALL fiber metal laminates.

Sci Rep

December 2024

Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.

Metal and polymer interface bonding significantly influences the mechanical performance of fiber metal laminates (FMLs). Therefore, the effect of surface treatments (mechanical abrasion, nitric acid etching, P2 etching, sulfuric acid anodizing (SAA), and electric discharge machine (EDM) texturing) carried on aluminum 2024-T3 alloy sheets was evaluated considering surface morphology, surface topography, and surface roughness. Further, the influence of surface treatments on interfacial adhesion strength and failure mode between the aluminum alloy and carbon fiber prepreg was investigated.

View Article and Find Full Text PDF

Development of Thermosensitive Hydrogels with Tailor-Made Geometries to Modulate Cell Harvesting of Non-Flat Cell Cultures.

Gels

December 2024

Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain.

Considering the complexity in terms of design that characterizes the different tissues of the human body, it is necessary to study and develop more precise therapies. In this sense, this article presents the possibility of fabricating photocurable thermosensitive hydrogels with free geometry and based on N-Vinyl Caprolactam (VCL) with the aim of modulating the adhesion of non-planar cell cultures. The fabrication process is based on the use as a mold of two-layer thick water-soluble polyvinyl alcohol (PVA) previously printed by Extrusion Material (MatEx).

View Article and Find Full Text PDF

The use of a composite welded joint consisting of titanium and austenitic stainless steel metals is evidently a favourable selection for industrial applications employing the resistance spot welding (RSW) operation. Nevertheless, achieving a high-quality welded joint proved challenging owing to the properties of the diverse range of materials' used. To improve the quality of dissimilar welded joints, the welding parameters should be selected precisely.

View Article and Find Full Text PDF

Anti-Fatigue Cellular Graphene Aerogel Through Multiscale Joint Strengthening.

Adv Mater

December 2024

Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China.

Despite fatigue free of monolayer graphene, its assemblies, like cellular graphene aerogels (CGA), are usually suffering of frequent fatigue and inherent strength degradation in repeated loading. In this work, by employing multiscale modeling, the highly intrinsic anisotropic mechanical properties of the cell wall due to the layer-by-layer stacked graphene sheets are uncovered, which easily trigger the unique skeleton joints damage during repeated loading and contribute the primary fatigue mechanism of CGA. Conversely, multiscale joint strengthening strategies are proposed by interlayer crosslinking and joint curvation, improving the interlayer interaction, and decreasing interlayer stress during compression, respectively, so as to effectively suppress joint damage to improve fatigue performance of CGA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!