Overexpression of p53 tumor suppressor protein in malignant cells induces cell cycle arrest, or alternatively, apoptosis thereby indicating that additional factors may contribute to the p53-mediated outcome. Comparison of the experimental protocols revealed that the construct encoding wild-type (wt) p53 was expressed in cells of different origin. Therefore, we decided to determine whether the intrinsic cellular program of primary cells of the same genetic background could have any effect on the oncogenic potential of mutated c-Ha-RAS and TP53. Primary rat cells (RECs) isolated from rat embryos of different age: at 13.5 gd (y) and 15.5 gd (o), were used for transfection. Immortalized rat cell clones overexpressing temperature-sensitive (ts) p53(135val) mutant and transformed cell clones after co-transfection with oncogenic c-Ha-Ras, were generated. The ts p53(135Val) mutant, switching between wt and mutant conformation, offers the possibility to study the role of p53 in cell cycle control in a model of malignant transformation in cells with the same genetic background. Surprisingly, the kinetics of cell proliferation at non-permissive temperature and that of cell cycle arrest at 32°C strongly differed between cell clones established from yRECs and oRECs. Furthermore, the kinetics of the re-enter of G1-arrested cells in the active cell cycle strongly differed between distinct cell clones. Finally, the susceptibility of immortalized and transformed cells to the pharmacological inhibitors of cyclin-dependent kinases (CDKs) considerably differed. Our results clearly show that overexpression of genes such as mutated TP53 and oncogenic c-Ha-RAS is not able to fully override the intrinsic cellular programme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756341 | PMC |
http://dx.doi.org/10.1007/s12307-009-0024-9 | DOI Listing |
PLoS One
January 2025
Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
Cyclin-dependent kinases 4 and 6 (CDK4/6) are crucial regulators of cell cycle progression and represent important therapeutic targets in breast cancer. This study employs a comprehensive computational approach to identify novel CDK4/6 inhibitors from marine natural products. We utilized structure-based virtual screening of the CMNPD database and MNP library, followed by rigorous filtering based on drug-likeness criteria, PAINS filter, ADME properties, and toxicity profiles.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina.
Purpose: Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model.
View Article and Find Full Text PDFJ Neurol
January 2025
Division of Child Neurology, Children's Hospital of Philadelphia, Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: The presented study identified the appropriate ocrelizumab dosing regimen for patients with pediatric-onset multiple sclerosis (POMS).
Methods: Patients with POMS aged 10-17 years were enrolled into cohort 1 (body weight [BW] < 40 kg, ocrelizumab 300 mg) and cohort 2 (BW ≥ 40 kg, ocrelizumab 600 mg) during a 24-week dose-exploration period (DEP), followed by an optional ocrelizumab (given every 24 weeks) extension period.
Primary Endpoints: pharmacokinetics, pharmacodynamics (CD19 B-cell count); secondary endpoint: safety; exploratory endpoints: MRI activity, protocol-defined relapses, Expanded Disability Status Scale (EDSS) score change.
Graefes Arch Clin Exp Ophthalmol
January 2025
Department of Ophthalmology, University Hospital Munster, Munster, Germany.
Purpose: The retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age-related macular degeneration (AMD) and other retinal degenerative diseases. The introduction of healthy RPE cell cultures into the subretinal space offers a potential treatment strategy. The aim of this study was the long-term culture and characterisation of RPE cells on nanofiber scaffolds.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA.
Tubulin polyglutamylation is essential for maintaining cilium stability and function, and defective tubulin polyglutamylation is associated with ciliopathies. However, the regulatory mechanism underlying proper axonemal polyglutamylation remains unclear. He et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!