Molecular cloning and expression analysis of Bmrbp1 , the Bombyx mori homologue of the Drosophila gene rbp1.

Mol Biol Rep

The Key Sericultural Laboratory of Agricultural Ministry, College of Sericulture and Biotechnology, Southwest University, 400716, Beibei, Chongqing, China.

Published: June 2010

RBP1 is an important splicing factor involved in alternative splicing of the pre-mRNA of Drosophila sex-determining gene dsx. In this work, the Bombyx mori homologue of the rbp1 gene, Bmrbp1, was cloned. The pre-mRNA of Bmrbp1 gene is alternatively spliced to produce four mature mRNAs, named Bmrbp1-PA, Bmrbp1-PB, Bmrbp1-PC and Bmrbp1-PD, with nucleotide lengths of 799 nt, 1,316 nt, 894 nt and 724 nt, coding for 142 aa, 159 aa, 91 aa and 117 aa, respectively. BmRBP1-PA and BmRBP1-PD contain a N terminal RNA recognization motif (RRM) and a C terminal arginine/serine-rich domain, while BmRBP1-PB and BmRBP1-PC only share a RRM. Amino acid sequence alignments showed that BmRBP1 is conserved with its homologues in other insects and with other SR family proteins. The RT-PCR showed that Bmrbp1-PA was strongly expressed in all examined tissues and development stages, but Bmrbp1-PB was weakly expressed in these tissues and stages. The expression of both Bmrbp1-PA and Bmrbp1-PB showed no obvious sex difference. While the Bmrbp1-PC and Bmrbp1-PD were beyond detection by RT-PCR very likely due to their tissue/stage specificity. These results suggested that Bmrbp1 should be a member of SR family splicing factors, whether it is involved in the sex-specific splicing of Bmdsx pre-mRNA needs further research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-009-9768-zDOI Listing

Publication Analysis

Top Keywords

bombyx mori
8
mori homologue
8
bmrbp1-pa bmrbp1-pb
8
bmrbp1-pb bmrbp1-pc
8
bmrbp1-pc bmrbp1-pd
8
bmrbp1
5
molecular cloning
4
cloning expression
4
expression analysis
4
analysis bmrbp1
4

Similar Publications

Microbial infections and excessive reactive oxygen species are the primary contributors to delays in wound healing with Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as the common wound infection causing bacteria. In fact, wound management has become more challenging since most of these microbes have developed resistance against commonly used conventional antibiotics thus making it necessary to develop natural products with both antibacterial and antioxidant activities. Increasing attention has been paid to silk sericin in the last decade, with limited research focus in Africa.

View Article and Find Full Text PDF

Bombyx mori nuclear polyhedrosis, caused by B. mori nucleopolyhedrovirus (BmNPV), threatens sericulture seriously. To explore strategies for controlling it, the UDP glycosyltransferase gene UGT41A3 (BmUGT41A3) was targeted.

View Article and Find Full Text PDF

LEF3 phosphorylation attenuates the replication of Bombyx mori nucleopolyhedrovirus by suppressing its interaction with alkaline nuclease.

Virology

December 2024

Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, 310018, Hangzhou, China. Electronic address:

Late expression factor 3 (LEF3), a multifunctional single-stranded DNA binding protein encoded by baculoviruses, is indispensable for viral DNA replication and plays a pivotal role in viral infection. Our previous quantitative analysis of phosphorylomics revealed that the phosphorylation levels of two serine residues (S8 and S25) located in LEF3 nuclear localization sequence were significantly up-regulated after Bombyx mori nucleopolyhedrovirus (BmNPV) infection, but the underlying mechanism remained unknown. To investigate the impact of phosphorylation on BmNPV infection, site-direct mutagenesis was performed on LEF3 to obtain phosphorylated mimic (S/D) or dephosphorylated mimic (S/A) mutants.

View Article and Find Full Text PDF

Instant and refrigerated acid soaking are commonly used in cocoon production to prevent or break diapause, and provide developable silkworm eggs for sericulture, while their mechanisms have not been fully understood. This study aims to investigate the mechanisms by which hydrochloric acid (HCl) or dimethyl sulfoxide (DMSO) promotes embryonic development in silkworm Bombyx mori, focusing on the chloride ion (Cl) related gene expression profiles. Our results revealed that the HCl treatment of up to 6 min enhanced hatchability in freshly picked and cold-stored eggs, whereas a slight decrease in hatchability was observed in those treated with DMSO for 40 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!