High-resolution light-induced kinetics of chlorophyll fluorescence (OJIP transients) were recorded and analyzed in cultures of diatoms (Thalassiosira weissflogii, Chaetoceros mulleri) and dinoflagellates (Amphidinium carterae, Prorocentrum minimum). Fluorescence transients showed the rapid exponential initial rise from the point O indicating low connectivity between PS II units and high absorption cross-section of PS II antenna. Dark-adapted dinoflagellates revealed capability to maintain the PS I-mediated re-oxidation of the PQ pool at the exposure to strong actinic light that may lead to the underestimation of F(M) value. In OJIP transients recorded in phytoplanktonic algae the fluorescence yield at the point O exceeded F(O) level because Q(A) has been already partly reduced at 50 micros after the illumination onset. PEA was also employed to study the recovery of photosynthetic reactions in T. weissflogii during incubation of nitrogen starved cells in N-replete medium. N limitation caused the impairment of electron transport between Q(A) and PQs, accumulation of closed PS II centers, and the reduced ability to generate transmembrane DeltapH upon illumination, almost fully restored during the recovery period. The recovered cells showed much higher values of NPQ than control ones suggesting maximization of photoprotection mechanisms in the population with a 'stress history.'
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11120-009-9491-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!