A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chemical causes of the typical burnt smell after accidental fires. | LitMetric

Chemical causes of the typical burnt smell after accidental fires.

Anal Bioanal Chem

Technische Universitaet Braunschweig, Institute of Ecological Chemistry and Waste Analysis, Hagenring 30, 38106 Braunschweig, Germany.

Published: November 2009

The components responsible for the typical burnt smell that occurs after accidental fires (e.g. in buildings) were identified. For this purpose, samples of odorous materials were taken from different real fire sites. Their volatile fractions were analysed by means of thermal desorption, headspace analysis and solid-phase microextraction (SPME) combined with gas chromatography-mass spectrometry (GC/MS). Measurements performed with SPME gave the highest number of analytes as well as the highest signal intensities. A divinylbenzene/carboxen/polydimethylsiloxane SPME fibre was found to be the most suitable for this task. To distinguish the odour-active compounds from the ca. 1,400 identified volatiles concentrated by SPME, an olfactory detection port was attached to the GC/MS and the column effluent was assessed by panellists. The results revealed that eleven odorous compounds were present in most of the investigated samples: acetophenone, benzyl alcohol, 4-ethyl-2-methoxyphenol, 2-hydroxybenzaldehyde, 2-hydroxy-5-methylbenzldehyde, 2-methoxyphenol, 2-methoxy-4-methylphenol, 2-methylphenol, 3-methylphenol, 4-methylphenol and naphthalene. Their odour activities were confirmed in additional olfactory experiments, and the relative ratios of these eleven compounds were determined. Based on these ratios, standard solutions that presented an intense odour with typical characteristics of the burnt smell were produced.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-009-3071-7DOI Listing

Publication Analysis

Top Keywords

burnt smell
12
typical burnt
8
accidental fires
8
chemical typical
4
smell accidental
4
fires components
4
components responsible
4
responsible typical
4
smell occurs
4
occurs accidental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!