Preparation of albumin nanospheres loaded with gemcitabine and their cytotoxicity against BXPC-3 cells in vitro.

Acta Pharmacol Sin

Pancreatic Disease Institute, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.

Published: September 2009

AI Article Synopsis

Article Abstract

Aim: To optimize formulation methods for loading gemcitabine (GEM), the main drug against pancreatic cancer, into albumin nanoparticles for extended blood circulation and improved efficacy.

Methods: GEM was loaded into two sizes of disolvation-crosslinked bovine serum albumin nanoparticles, with a mean diameter of 109.7 nm and 405.6 nm, respectively, by co-precipitation (the direct method) and follow-up adsorption (the indirect method). The antitumor activities of the two nanoparticulate formulations, were evaluated according to their anti-proliferative effects on the human pancreatic cell line BXPC-3, which were assessed using the MTT assay.

Results: The two nanoparticulate formulations, created by direct co-precipitation and indirect adsorption, possessed smooth surfaces and high drug loading efficiencies, 83% and 93% at 11% and 13% drug loading, respectively. The two formulations released GEM for 8 and 12 h, respectively, and significantly improved anti-BXPC-3 proliferation effects, as compared with the GEM solution and the drug-free albumin particles.

Conclusion: Co-precipitating and adsorbing GEM into albumin particles resulted in sustained-release nanoparticulate formulations with improved antitumor cytotoxicity. The result suggests that this is a useful formulation strategy for improving the antitumor efficacy of GEM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007180PMC
http://dx.doi.org/10.1038/aps.2009.125DOI Listing

Publication Analysis

Top Keywords

nanoparticulate formulations
12
albumin nanoparticles
8
drug loading
8
gem
6
preparation albumin
4
albumin nanospheres
4
nanospheres loaded
4
loaded gemcitabine
4
gemcitabine cytotoxicity
4
cytotoxicity bxpc-3
4

Similar Publications

Magnetite Nanoparticles Encapsulated with PBS-PEG for AMF Hyperthermia.

Materials (Basel)

January 2025

University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali 140413, Punjab, India.

Novel studies on typical synthesized magnetite nanoparticles were encapsulated into a poly (butylene succinate)/poly (ethylene glycol) copolymer (PBS-PEG). PBS was chosen because of its biocompatibility characteristics necessary for biomedical applications. PEG, as part of the macromolecular structure, increases the hybrid system's solubility in an aqueous environment, increasing the circulation time of the material in the bloodstream.

View Article and Find Full Text PDF

An update on selective estrogen receptor modulator: repurposing and formulations.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmaceutics & Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Gujarat, 384012, India.

The selective estrogen receptor modulator (SERM) raloxifene hydrochloride (RLH) is used extensively in the management and prevention of breast cancer and osteoporosis. Recent clinical studies show the repurposing of RLH in various diseases based on its structure and some clinical trials studies. Optimizing the clinical effectiveness of this important drug requires a thorough review of the formulation techniques, patent environment, and analytical procedures.

View Article and Find Full Text PDF

Nocturnal asthma (NA) is a high-prevalence disease that causes severe respiratory issues, leading to death from early midnight to early morning. In this research, nanoparticulate drug delivery system of methylprednisolone (MP) was developed using chitosan (CH) and pectin (PEC). MP is a synthetic corticosteroid medication widely used for its potent anti-inflammatory activity.

View Article and Find Full Text PDF

The use of nanoparticulate systems for the transport of active ingredients into hair follicles has been researched for almost two decades, resulting in countless publications with a wide variety of particle types, release mechanisms and active ingredients. The production of a stable dispersion is often time-consuming and costly. In this publication, we demonstrate for the first time that simply adding diverse submicron particles to a drug solution significantly increases follicular penetration depth by over 160% to 190%, allowing the targeting of subinfundibular structures.

View Article and Find Full Text PDF

PEG-PLGA nanoparticles deposited in and .

J Pharm Anal

December 2024

Institute of Infectious Disease and Infection Control, Jena University Hospital, Jena, 07747, Germany.

In our prior research, polymer nanoparticles (NPs) containing tobramycin displayed robust antibacterial efficacy against biofilm-embedded () and (. ) cells, critical pathogens in cystic fibrosis. In the current study, we investigated the deposition of a nanoparticulate carrier composed of poly(d,l-lactic--glycolic acid) (PLGA) and poly(ethylene glycol)--PLGA (PEG-PLGA) that was either covalently bonded with cyanine-5-amine (Cy5) or noncovalently bound with freely embedded cationic rhodamine B (RhB), which served as a drug surrogate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!