Preparation of carbon nanotube bioconjugates for biomedical applications.

Nat Protoc

Department of Chemistry, Stanford University, Stanford, California, USA.

Published: December 2009

Biomedical applications of carbon nanotubes have attracted much attention in recent years. Here, we summarize our previously developed protocols for functionalization and bioconjugation of single-walled carbon nanotubes (SWNTs) for various biomedical applications including biological imaging; using nanotubes as Raman, photoluminescence and photoacoustic labels; sensing using nanotubes as Raman tags and drug delivery. Sonication of SWNTs in solutions of phospholipid-polyethylene glycol (PL-PEG) is our most commonly used protocol of SWNT functionalization. Compared with other frequently used covalent strategies, our non-covalent functionalization protocol largely retains the intrinsic optical properties of SWNTs, which are useful in various biological imaging and sensing applications. Functionalized SWNTs are conjugated with targeting ligands, including peptides and antibodies for specific cell labeling in vitro or tumor targeting in vivo. Radio labels are introduced for tracking and imaging of SWNTs in real time in vivo. Moreover, SWNTs can be conjugated with small interfering RNA (siRNA) or loaded with chemotherapy drugs for drug delivery. These procedures take various times ranging from 1 to 5 d.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853228PMC
http://dx.doi.org/10.1038/nprot.2009.146DOI Listing

Publication Analysis

Top Keywords

biomedical applications
12
carbon nanotubes
8
biological imaging
8
nanotubes raman
8
drug delivery
8
swnts conjugated
8
swnts
6
preparation carbon
4
carbon nanotube
4
nanotube bioconjugates
4

Similar Publications

The "" under this Perspective underline the importance of interdisciplinary collaboration and partnerships across several disciplines, such as medical science and technology, medicine, bioengineering, and computational approaches, in bridging the gap between research, manufacturing, and clinical applications. Effective communication is key to bridging team gaps, enhancing trust, and resolving conflicts, thereby fostering teamwork and individual growth toward shared goals. Drawing from the success of the COVID-19 vaccine development, we advocate the application of similar collaborative models in other complex health areas such as nanomedicine and biomedical engineering.

View Article and Find Full Text PDF

Precise Sizing and Collision Detection of Functional Nanoparticles by Deep Learning Empowered Plasmonic Microscopy.

Adv Sci (Weinh)

January 2025

Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.

Single nanoparticle analysis is crucial for various applications in biology, materials, and energy. However, precisely profiling and monitoring weakly scattering nanoparticles remains challenging. Here, it is demonstrated that deep learning-empowered plasmonic microscopy (Deep-SM) enables precise sizing and collision detection of functional chemical and biological nanoparticles.

View Article and Find Full Text PDF

Biological carriers have emerged as significant tools to deliver radionuclides in nuclear medicine, providing a meaningful perspective for tumor imaging and treatment. Various radionuclide-labeled biological carriers have been developed to meet the needs of biomedical applications. This review introduces the principles of radionuclide-mediated imaging and therapy and the selected criteria of them, as well as a comprehensive description of the characteristics and functions of representative biological carriers including bacteria, cells, viruses, and their biological derivatives, emphasizing the labeled strategies of biological carriers combined with radionuclides.

View Article and Find Full Text PDF

Generative Artificial Intelligence: Applications in Scientific Writing and Data Analysis in Wound Healing Research.

Adv Skin Wound Care

January 2025

At the Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States, Adrian Chen, BS, Aleksandra Qilleri, BS, and Timothy Foster, BS, are Medical Students. Amit S. Rao, MD, is Project Manager, Department of Surgery, Wound Care Division, Northwell Wound Healing Center and Hyperbarics, Northwell Health, Hempstead. Sandeep Gopalakrishnan, PhD, MAPWCA, is Associate Professor and Director, Wound Healing and Tissue Repair Analytics Laboratory, School of Nursing, College of Health Professions, University of Wisconsin-Milwaukee. Jeffrey Niezgoda, MD, MAPWCA, is Founder and President Emeritus, AZH Wound Care and Hyperbaric Oxygen Therapy Center, Milwaukee, and President and Chief Medical Officer, WebCME, Greendale, Wisconsin. Alisha Oropallo, MD, is Professor of Surgery, Donald and Barbara Zucker School of Medicine and The Feinstein Institutes for Medical Research, Manhasset New York; Director, Comprehensive Wound Healing Center, Northwell Health; and Program Director, Wound and Burn Fellowship program, Northwell Health.

Generative artificial intelligence (AI) models are a new technological development with vast research use cases among medical subspecialties. These powerful large language models offer a wide range of possibilities in wound care, from personalized patient support to optimized treatment plans and improved scientific writing. They can also assist in efficiently navigating the literature and selecting and summarizing articles, enabling researchers to focus on impactful studies relevant to wound care management and enhancing response quality through prompt-learning iterations.

View Article and Find Full Text PDF

Advances and applications in single-cell and spatial genomics.

Sci China Life Sci

December 2024

Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.

The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!