Objective: Caveolin-1 (Cav-1) may positively or negatively influence the development of atherosclerosis, depending on the cell type and the metabolic pathways regulated by this protein. We investigate the effects of Cav-1 on cholesterol efflux in RAW264.7 infected with AdPPARgamma1 and whether Cav-1 could attenuate established atherosclerotic lesions in PPARgamma1-treated apoE-deficient mice.
Methods And Results: Compared with AdGFP control, PPARgamma1 and Cav-1 were constitutively overexpressed in AdPPARgamma1-infected RAW264.7 cells, which stimulated cholesterol efflux to apolipoprotein A-I. Using a small interfering RNA approach (Cav-1-siRNA) we achieved an efficient and specific knockdown of caveolin-1 expression (80%), which resulted in a remarkable reduction of cholesterol efflux in RAW264.7 cells . Moreover, PPARgamma1-treated Cav-1-siRNA RAW264.7 cells showed more ability to stimulate cholesterol efflux than Cav-1-siRNA RAW264.7 cells, but far less than control-siRNA RAW264.7 cells and PPARgamma1-treated RAW264.7 cells. In addition, 40-week-old apoE-deficient mice fed a Western-type diet and infected for 4 weeks with AdPPARgamma1 showed induced Cav-1 expression in aortic vascular endothelial cells, smooth muscle cells and macrophages, as well as attenuated established atherosclerotic lesions.
Conclusions: PPARgamma1 gene therapy could induce Cav-1 expression and enhance cholesterol efflux and attenuate atherosclerosis in apoE-deficient mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000235927 | DOI Listing |
Clin Mol Hepatol
January 2025
Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341 Chuncheon, Republic of Korea.
ACS Nano
January 2025
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
School of Forensic Medicine, Guizhou Medical University, Guiyang, China.
Deubiquitinating enzymes (DUBs) are integral regulators of protein stability. Among these, Ubiquitin-specific protease 18 (USP18) has emerged as a potential therapeutic target for heart failure. However, its precise role in atherosclerosis remains to be comprehensively understood.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Computational Biology and Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
Macrophages undergo polarization, resulting in distinct phenotypes. These transitions, including de-/repolarization, lead to hysteresis, where cells retain genetic and epigenetic signatures of previous states, influencing macrophage function. We previously identified a set of interferon-stimulated genes (ISGs) associated with high lipid levels in macrophages that exhibited hysteresis following M1 polarization, suggesting potential alterations in lipid metabolism.
View Article and Find Full Text PDFLipids Health Dis
January 2025
The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this association remain unclear. In our study, we performed biochemical analyses of serum and histopathological examinations of liver tissue in mice. To preliminarily explore the molecular mechanisms of tirzepatide on metabolic dysfunction-associated fatty liver disease (MAFLD), liquid chromatography-mass spectrometry (LC-MS) was employed for comprehensive metabolomic, lipidomic, and proteomic analyses in MAFLD mice fed a high-fat diet (HFD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!