Background: FOXP3-expressing regulatory T cells (Tregs) play a crucial role in maintaining allogeneic transplant tolerance in experimental models. In clinical transplantation, there are few data about their role in chronic inflammation. We hypothesized that Tregs might accumulate within the graft since enrichment of Tregs has been frequently described in chronically inflamed tissues.

Methods: Sixty-seven biopsies, indicated by a rise in creatinine level, were studied. Thirty-four biopsies showing acute T-cell-mediated rejection and 33 displaying inflamed fibrosis were selected. Tregs frequency was calculated for each infiltrate by counting FOXP3+ and CD3+ cells on two contiguous serial sections.

Results: A total of 121 infiltrates were scored with a mean of 309 CD3+ cells per infiltrate (range: 50-700). Tregs were enriched within allografts exhibiting inflamed fibrosis versus acute cellular rejection (10.6 +/- 6.8% versus 5.5 +/- 2.6%, respectively, P = 0.005). In those with inflammation within scarred areas, the subset of patients with a low FOXP3/CD3 ratio (below the median value) displayed a lower frequency of B-cell-enriched nodular cell clusters (20% versus 86%, P = 0.001) and had a significantly lower graft survival (log-rank, P = 0.02). In multivariate analysis, the low FOXP3/CD3 ratio remained an independent indicator of outcome (P = 0.03). Consistently, the FOXP3+/IL-17+ cell ratio was higher in nodular than in diffuse infiltrates.

Conclusions: Our results suggest that Tregs may dampen the graft injury in chronic (versus acute) inflammation and stress the importance of devising strategies to enhance Tregs efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ndt/gfp435DOI Listing

Publication Analysis

Top Keywords

inflamed fibrosis
12
cd3+ cells
8
versus acute
8
low foxp3/cd3
8
foxp3/cd3 ratio
8
tregs
7
foxp3-enriched infiltrates
4
infiltrates associated
4
associated better
4
better outcome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!