The solution-phase synthesis of a 111 member isoquinoline library is described. The isoquinoline scaffold has been accessed through the palladium- and copper-catalyzed cyclization of iminoalkynes and the palladium-catalyzed iminoannulation of internal alkynes, followed by diversification of hydroxyl functionality where it is present.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783704 | PMC |
http://dx.doi.org/10.1021/cc9000949 | DOI Listing |
Molecules
December 2024
Institute of Organic and Analytical Chemistry (ICOA UMR 7311), CNRS, University of Orleans, F-45067 Orléans, France.
The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.
View Article and Find Full Text PDFJACS Au
November 2024
Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
(-)-Pleurotin () and (+)-dihydropleurotinic acid () are benzoquinone meroterpenoids isolated from fungal sources with powerful antitumor and antibiotic activities. Concise asymmetric total syntheses of the stereochemically pure (+)-dihydropleurotinic acid () and (-)-pleurotin () from the chiral pool ()-Roche ester-derived vinyl bromide have been achieved in 12 and 13 longest linear steps, respectively. The key transformations feature a Michael addition/alkylation cascade reaction to forge three contiguous stereocenters matched with the natural products, a PtO-catalyzed stereoselective reduction of olefin to generate the correct stereocenter at C3, a palladium-catalyzed Negishi cross-coupling between triflate and zinc reagent to introduce the redox-sensitive para-quinone moiety, and a hydroboration/copper-catalyzed carboxylation sequence to incorporate the vital carboxyl group.
View Article and Find Full Text PDFMolecules
October 2024
Department of Chemistry, Dankook University, Cheonan 31116, Republic of Korea.
Cysteine plays a crucial role in the development of an efficient copper-catalyst system, where its thiol group serves as a strong anchoring site for metal coordination. By immobilizing copper onto cysteine-modified, polydopamine-coated magnetite particles, this advanced catalytic platform exhibits exceptional stability and catalytic activity. Chemical modification of the polydopamine (PDA) surface with cysteine enhances copper salt immobilization, leading to the formation of the FeO@PDA-Cys@Cu platform.
View Article and Find Full Text PDFJ Org Chem
December 2024
Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain.
Functionalized tetra--methoxyazobenzenes have been prepared in a two-step approach based on palladium-catalyzed C-H bromination of azobenzenes, followed by copper-catalyzed methoxylation. The method has shown a broad tolerance to different functional groups that could not be incorporated by previous strategies. With this two-step transition metal-catalyzed strategy, we achieved overall yields that range from good to excellent and enable the exploitation of these highly coveted photoswitches.
View Article and Find Full Text PDFNat Commun
August 2024
Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
Atropisomeric biaryls bearing carbonyl groups have attracted increasing attention due to their prevalence in diverse bioactive molecules and crucial role as efficient organo-catalysts or ligands in asymmetric transformations. However, their preparation often involves tedious multiple steps, and the direct synthesis via asymmetric carbonylation has scarcely been investigated. Herein, we report an efficient palladium-catalyzed enantioconvergent aminocarbonylation of racemic heterobiaryl triflates with amines via dynamic kinetic asymmetric transformation (DyKAT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!