The S-D bond dissociation dynamics of thiophenol-d1 (C6H5SD) pumped at 266, 243, and 224 nm are examined using the velocity map ion imaging technique. At both 266 and 243 nm, distinct peaks associated with X and A states of the phenylthiyl radical (C6H5S*) are observed in the D+ image at high and low kinetic energy regions, respectively. The partitioning of the available energy into the vibrational energy of the phenylthiyl radical is found to be enhanced much more strongly at 266 nm compared to that at 243 nm. This indicates that the pipi* electronic excitation at 266 nm is accompanied by significant vibrational excitation. Given the relatively large anisotropy parameter of -0.6, the S-D dissociation at 266 nm is prompt and should involve the efficient coupling to the upper-lying n(pi)sigma* repulsive potential energy surface. The optical excitation of thiophenol at 224 nm is tentatively assigned to the pisigma* transition, which leads to the fast dissociation on the repulsive potential energy surface along the S-D coordinate. The nature of the electronic transitions associated with UV absorption bands is investigated with high-level ab initio calculations. Excitations to different electronic states of thiophenol result in unique branching ratios and vibrational excitations for the fragment of the phenylthiyl radical in the two lowest electronic states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp9076855 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!