A 0.75-m3 pilot-scale biotrickling filter was run for over 1 yr in a Spanish furniture company to evaluate its performance in the removal of volatile organic compounds (VOCs) contained in the emission of two different paint spray booths. The first one was an open front booth used to manually paint furniture, and the second focus was an automatically operated closed booth operated to paint pieces of furniture. In both cases, the VOC emissions were very irregular, with rapid and extreme fluctuations. The pilot plant was operated at an empty bed residence time (EBRT) ranging from 10 to 40 sec, and good removal efficiencies of VOCs were usually obtained. When a buffering activated carbon prefilter was installed, the system performance was improved considerably, so a much better compliance with legal constraints was reached. After different shutdowns in the factory, the period to recover the previous performance of the biotrickling reactor was minimal. A weekend dehydration strategy was developed and implemented to control the pressure drop associated with excessive biomass accumulation.

Download full-text PDF

Source
http://dx.doi.org/10.3155/1047-3289.59.8.998DOI Listing

Publication Analysis

Top Keywords

pilot-scale biotrickling
8
biotrickling filter
8
volatile organic
8
performance
4
performance pilot-scale
4
filter controlling
4
controlling volatile
4
organic compound
4
compound emissions
4
furniture
4

Similar Publications

Pilot-scale biogas desulfurization through anoxic biofiltration.

J Hazard Mater

December 2024

Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain. Electronic address:

In this study, the performance of a pilot-scale biotrickling filter (BTF) for anoxic hydrogen sulfide (HS) removal from real biogas was evaluated over 226 days. The BTF, inoculated with activated sludge from a nearby wastewater treatment plant, operated in an industrial environment with raw biogas from an anaerobic digester fed with municipal solid waste. The operating strategy was based on controlling nitrate consumption by sulfur-oxidizing nitrate-reducing (SO-NR) bacteria.

View Article and Find Full Text PDF

Performance evaluation of HS and NH removal by biological trickling filter reactors with various fillers under heterotrophic conditions.

Sci Total Environ

November 2023

CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. Electronic address:

A pilot-scale biological trickling filter (BTF) reactor (13.5 L) packed with different fillers (Pine bark, Cinder, Straw, and MBBR (mobile bed biofilm reactor) filler was employed to evaluate their removal performance of HS and NH after heterotrophic bacterium addition, and some parameters, including different packing heights, empty bed residence time (EBRT), inlet titers, loading ratios, and restart trial, were investigated in this study. According to the experimental results, BTF filled with pine bark exhibited better removal efficiency than other reactors under a variety of conditions.

View Article and Find Full Text PDF

A pilot-scale biotrickling filter (BTF) was operated in counter-current flow mode under anoxic conditions, using diluted agricultural digestate as inoculum and as the recirculation medium for the nutrient source. The process was tested on-site at an agricultural fermentation plant, where real biogas was used. The pilot plant was therefore exposed to real process-related fluctuations.

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) are a major source of NO, a potent greenhouse gas with 300 times higher global warming potential than CO. Several approaches have been proposed for mitigation of NO emissions from WWTPs and have shown promising yet only site-specific results. Here, self-sustaining biotrickling filtration, an end-of-the-pipe treatment technology, was tested in situ at a full-scale WWTP under realistic operational conditions.

View Article and Find Full Text PDF

In this study, two NH-N and S removal strains, namely, Kosakonia oryzae (FB2-3) and Acinetobacter baumannii (L5-4), were isolated from the packing materials in a long-running biotrickling filter (BTF). The removal capacities of combined FB2-3 and L5-4 (FB2-3 + L5-4) toward 100 mg L of NH-N and 200 mg L of S reached 97.31 ± 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!