Malaria and intestinal nematode infection are widespread and co-infection frequently occurs. We investigated whether co-infected intestinal nematodes modulate immunity against co-existing malaria parasites. Infection of C57BL/6 mice with Plasmodium yoelii 17XNL (Py) was transient and self-limiting, but preceding infection with Heligmosomoides polygyrus (Hp), a mouse intestinal nematode, exacerbated malaria resulting in higher parasite burdens and poor survival of the mice. Co-infection with Hp led to reduced Py-responsive proliferation and IFN-gamma production of spleen cells, and higher activation of CD4(+)CD25(+)Foxp3(+) Treg. In vivo depletion of Treg recovered anti-Py immunity and rescued co-infected mice from exacerbated malaria. However, we did not observe any obvious ex vivo activation of Treg by either Hp products or living worms. Our results suggest that intestinal nematodes moderate host immune responses during acute malaria infection by aggressive activation of Treg. Elucidation of the mechanisms of Treg activation in situ is a target for future analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eji.200939433 | DOI Listing |
Sci Rep
January 2025
Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22, Showa, Maebashi, Gunma, 371-8511, Japan.
Systemic sclerosis (SSc) is an idiopathic systemic connective tissue disorder characterized by fibrosis of the skin and internal organs, with growing interest in the imbalance between Th17 cells and regulatory T cells (Tregs) in the disease's pathogenesis. Heligmosomoides polygyrus (Hp), a natural intestinal parasite of mice, is known to induce Tregs in the host. We aimed to investigate the effects of Hp-induced Tregs on bleomycin-induced dermal fibrosis and clarify the role of the Th17/Treg balance in SSc fibrosis.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Department of Clinical Medicine, Aarhus University, 8220 Aarhus, Denmark.
Heligmosomoides polygyrus co-infection is reported to have protective antiviral effects against pulmonary viral infections. To investigate a potential underlying mechanism, we infected C57BL/6 mice with H. polygyrus larvae for two weeks.
View Article and Find Full Text PDFRev Bras Parasitol Vet
January 2025
Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Campos dos Goytacazes, RJ, Brasil.
This paper describes a novel in vivo study of Cymbopogon citratus (lemon grass) to assess its anthelmintic activity. To this end, C57BL/6 mice were separated into three groups: G1: uninfected; G2: negative control infected with Heligmosomoides polygyrus bakeri and administered with 3% dimethyl sulfoxide (DMSO); and G3: infected with H. polygyrus bakeri and treated with C.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
Parasitic helminths are a major global health threat, infecting nearly one-fifth of the human population and causing significant losses in livestock and crops. Resistance to the few anthelmintic drugs is increasing. Here, we report a set of avocado fatty alcohols/acetates (AFAs) that exhibit nematocidal activity against four veterinary parasitic nematode species: Brugia pahangi, Teladorsagia circumcincta and Heligmosomoides polygyrus, as well as a multidrug resistant strain (UGA) of Haemonchus contortus.
View Article and Find Full Text PDFSci Immunol
December 2024
Department of Immunobiology, Université de Lausanne, Epalinges, Switzerland.
The molecular mechanisms by which worm parasites evade host immunity are incompletely understood. In a mouse model of intestinal helminth infection using (), we show that helminthic glutamate dehydrogenase (heGDH) drives parasite chronicity by suppressing macrophage-mediated host defense. Combining RNA-seq, ChIP-seq, and targeted lipidomics, we identify prostaglandin E (PGE) as a major immune regulatory mechanism of heGDH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!