Microglia are the resident macrophage population in the central nervous system (CNS) parenchyma and, as such, are poised to provide a first line of defense against invading pathogens. Microglia are endowed with a vast repertoire of pattern recognition receptors that include such family members as Toll-like receptors and phagocytic receptors, which collectively function to sense and eliminate microbes invading the CNS parenchyma. In addition, microglial activation elicits a broad range of pro-inflammatory cytokines and chemokines that are involved in the recruitment and subsequent activation of peripheral immune cells infiltrating the infected CNS. Studies from several laboratories have demonstrated the ability of microglia to sense and respond to a wide variety of pathogens capable of colonizing the CNS including bacterial, viral, and fungal species. This review will highlight the role of microglia in microbial recognition and the resultant antipathogen response that ensues in an attempt to clear these infections. Implications as to whether microglial activation is uniformly beneficial to the CNS or in some circumstances may exacerbate pathology will also be discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847353 | PMC |
http://dx.doi.org/10.1007/s11481-009-9170-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!