4-Fluoroprolines are among the most useful nonnatural amino acids in chemical biology. Here, practical routes are reported for the synthesis of the 2S,4R, 2S,4S, and 2R,4S diastereomers of 4-fluoroproline. Each route starts with (2S,4R)-4-hydroxyproline, which is a prevalent component of collagen and hence readily available, and uses a fluoride salt to install the fluoro group. Hence, the routes provide process-scale access to these useful nonnatural amino acids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2598397PMC
http://dx.doi.org/10.1016/j.jfluchem.2008.06.024DOI Listing

Publication Analysis

Top Keywords

nonnatural amino
8
amino acids
8
practical syntheses
4
syntheses 4-fluoroprolines
4
4-fluoroprolines 4-fluoroprolines
4
4-fluoroprolines nonnatural
4
acids chemical
4
chemical biology
4
biology practical
4
practical routes
4

Similar Publications

[Transaminases: high-throughput screening a ketone-fluorescent probe and applications].

Sheng Wu Gong Cheng Xue Bao

January 2025

College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.

Transaminases are a class of enzymes that catalyze the transfer of amino between amino acids and keto acids, playing an important role in the biosynthesis of organic amines and the corresponding derivatives. However, natural enzymes often have low catalytic efficiency against non-natural substrates, which limits their widespread applications. Enzyme engineering serves as an effective approach to improve the catalytic properties and thereby expand the application scope of transaminases.

View Article and Find Full Text PDF

Silk fiber, produced by the silkworm , is a protein fiber with an excellent mechanical strength and broad biocompatibility. Multiple approaches, including genetic and chemical methods, must be combined to tailor silk fiber properties for wide applications, such as textiles and biomaterials. Genetic code expansion (GCE) is an alternative method to alter proteins' chemical and physical properties by incorporating synthetic amino acids into their primary structures.

View Article and Find Full Text PDF

In Vitro Selection of Collagen-Binding Vascular Endothelial Growth Factor Containing Genetically Encoded Mussel-Inspired Adhesive Amino Acids.

Chemistry

January 2025

Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.

Protein immobilization technology is important in medical and industrial applications. We previously reported all-in-one in vitro selection, wherein a collagen-binding vascular endothelial growth factor (CB-VEGF) was identified from a fusion library of random and VEGF sequences. However, its interaction chemistry is mainly limited to the interaction established by the 20 canonical amino acids.

View Article and Find Full Text PDF

We present PepFuNN, a new open-source version of the PepFun package with functions to study the chemical space of peptide libraries and perform structure-activity relationship analyses. PepFuNN is a Python package comprising five modules to study peptides with natural amino acids and, in some cases, sequences with non-natural amino acids based on the availability of a public monomer dictionary. The modules allow calculating physicochemical properties, performing similarity analysis using different peptide representations, clustering peptides using molecular fingerprints or calculated descriptors, designing peptide libraries based on specific requirements, and a module dedicated to extracting matched pairs from experimental campaigns to guide the selection of the most relevant mutations in design new rounds.

View Article and Find Full Text PDF

Real-Time Observation of Clickable Cyanotoxin Synthesis in Bloom-Forming Cyanobacteria and .

Toxins (Basel)

December 2024

Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria.

Recently, the use of click chemistry for localization of chemically modified cyanopeptides has been introduced, i.e., taking advantage of promiscuous adenylation (A) domains in non-ribosomal peptide synthesis (NRPS), allowing for the incorporation of clickable non-natural amino acids (non-AAs) into their peptide products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!