The in vivo application of cytolytic peptides for cancer therapeutics is hampered by toxicity, nonspecificity, and degradation. We previously developed a specific strategy to synthesize a nanoscale delivery vehicle for cytolytic peptides by incorporating the nonspecific amphipathic cytolytic peptide melittin into the outer lipid monolayer of a perfluorocarbon nanoparticle. Here, we have demonstrated that the favorable pharmacokinetics of this nanocarrier allows accumulation of melittin in murine tumors in vivo and a dramatic reduction in tumor growth without any apparent signs of toxicity. Furthermore, direct assays demonstrated that molecularly targeted nanocarriers selectively delivered melittin to multiple tumor targets, including endothelial and cancer cells, through a hemifusion mechanism. In cells, this hemifusion and transfer process did not disrupt the surface membrane but did trigger apoptosis and in animals caused regression of precancerous dysplastic lesions. Collectively, these data suggest that the ability to restrain the wide-spectrum lytic potential of a potent cytolytic peptide in a nanovehicle, combined with the flexibility of passive or active molecular targeting, represents an innovative molecular design for chemotherapy with broad-spectrum cytolytic peptides for the treatment of cancer at multiple stages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735896 | PMC |
http://dx.doi.org/10.1172/JCI38842 | DOI Listing |
Mar Drugs
January 2025
Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
The present research aimed to assess the anti-cancer effects of the polysaccharide fraction (SJP) isolated from . The release of immune-activating cytokines, including IL-6, IL-12, and TNF-α, was markedly stimulated by the SJP in a concentration-dependent manner within the range of 1 to 100 µg/mL. Furthermore, the prophylactic intravenous () and per os () injection of SJP boosted the cytolytic activity mediated by NK cells and CTLs against tumor cells.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
The excessive cytokine release and limited persistence represent major challenges for chimeric antigen receptor T (CAR-T) cell therapy in diverse tumors. Conventional CARs employ an intracellular domain (ICD) from the ζ subunit of CD3 as a signaling module, and it is largely unknown how alternative CD3 chains potentially contribute to CAR design. Here, we obtained a series of CAR-T cells against HER2 and mesothelin using a domain comprising a single immunoreceptor tyrosine-based activation motif from different CD3 subunits as the ICD of CARs.
View Article and Find Full Text PDFJ Membr Biol
December 2024
Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
Front Immunol
December 2024
Drug Discovery Sciences, Bayer AG, Wuppertal, Germany.
Polyfunctional T cells programmed to perform activities such as degranulation of lytic enzymes and simultaneous production of multiple cytokines are associated with more effective control of viral infections. Immune responses to recombinant adeno-associated virus (rAAV) vector delivery systems can critically influence therapeutic efficacy and safety of gene therapy. However, knowledge of polyfunctional T cells in anti-AAV immune responses is scarce.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States.
The synthetically evolved pHD family of peptides is known to self-assemble into macromolecule-sized nanopores of 2-10 nm diameter in synthetic lipid bilayers, but only when the pH is below ∼6. Here, we show that a representative family member, pHD108, has the same pH-responsive nanopore-forming activity in the endosomal membranes of living human cells, which is triggered by endosomal acidification. This enables the cytosolic delivery of endocytosed proteins and other macromolecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!