Purpose: To systematically review the literature examining the effects of neuromuscular electrical stimulation (NMES) on swallowing and neural activation. The review was conducted as part of a series examining the effects of oral motor exercises (OMEs) on speech, swallowing, and neural activation.
Method: A systematic search was conducted to identify relevant studies published in peer-reviewed journals from 1960 to 2007. All studies meeting the exclusion/inclusion criteria were appraised for quality and categorized as efficacy or exploratory research based on predetermined criteria.
Results: Out of 899 citations initially identified for the broad review of OMEs, 14 articles relating to NMES qualified for inclusion. Most of the studies (10/14) were considered exploratory research, and many had significant methodological limitations.
Conclusions: This systematic review reveals that surface NMES to the neck has been most extensively studied with promising findings, yet high-quality controlled trials are needed to provide evidence of efficacy. Surface NMES to the palate, faucial pillars, and pharynx has been explored in Phase I research, but no evidence of efficacy is currently available. Intramuscular NMES has been investigated in a single Phase I exploratory study. Additional research is needed to document the effects of such protocols on swallowing performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1044/1058-0360(2009/08-0088) | DOI Listing |
J Physiol
January 2025
Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
Motor neurons (MNs) within the nucleus ambiguus innervate the skeletal muscles of the larynx, pharynx and oesophagus, which are essential for swallow. Disordered swallow (dysphagia) is a serious problem in elderly humans, increasing the risk of aspiration, a key contributor to mortality. Despite this importance, very little is known about the pathophysiology of ageing dysphagia and the relative importance of frank muscle weakness compared to timing/activation abnormalities.
View Article and Find Full Text PDFCureus
December 2024
Department of Anatomical Sciences, William Carey University College of Osteopathic Medicine, Hattiesburg, USA.
The digastric muscle is a suprahyoid muscle that is composed of an anterior belly and a posterior belly, which originate from the first and second pharyngeal arches, respectively, and they are innervated by the nerves of these arches. The digastric muscles are involved in the elevation of the hyoid bone and depression of the mandible during mastication, speech, and swallowing. In this report, we present the rare case of bilateral accessory anterior belly of the digastric muscles (ABDMs) that originated from the digastric fossa, medial to the anterior bellies.
View Article and Find Full Text PDFBehav Brain Res
March 2025
Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China. Electronic address:
The discovery of the brain's mirror neuron system enables researchers to gain a deeper understanding of social cognitive activities from the level of neural mechanisms. Mirror neurons are situated in bilateral brain regions, overlapping with the swallowing neural network, and there are complex network pathways connecting the two. Repeatedly inducing the activation of mirror neurons in stroke patients can enhance the brain's ability to relearn its original swallowing function, and then restore the swallowing neural network.
View Article and Find Full Text PDFArch Rehabil Res Clin Transl
December 2024
Peninsula Hospital Center, Department of Speech-Language Pathology and Audiology, Far Rockaway, NY.
Objective: To determine if fatigue systematically effects the timing of swallowing events and to discuss underlying causes of fatigue other than peripheral neuromuscular fatigue.
Design: Pre-post within-subject repeated-measures design.
Setting: General acute care hospital and designated stroke center.
NPJ Digit Med
January 2025
Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Korea.
Dysphagia, a swallowing disorder, requires continuous monitoring of throat-related events to obtain comprehensive insights into the patient's pharyngeal and laryngeal functions. However, conventional assessments were performed by medical professionals in clinical settings, limiting persistent monitoring. We demonstrate feasibility of a ubiquitous monitoring system for autonomously detecting throat-related events utilizing a soft skin-attachable throat vibration sensor (STVS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!