Human immunodeficiency virus (HIV)-associated nephropathy is a significant cause of morbidity and mortality in HIV-infected persons. Vpr-induced cell cycle dysregulation and apoptosis of renal tubular epithelial cells are important components of the pathogenesis of HIV-associated nephropathy (HIVAN). FAT10 is a ubiquitin-like protein that is upregulated in renal tubular epithelial cells in HIVAN. In these studies, we report that Vpr induces increased expression of FAT10 in tubular cells and that inhibition of FAT10 expression prevents Vpr-induced apoptosis in human and murine tubular cells. Moreover, we found that Vpr interacts with FAT10 and that these proteins colocalize at mitochondria. These studies establish FAT10 as a novel mediator of Vpr-induced cell death.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772664 | PMC |
http://dx.doi.org/10.1128/JVI.00034-09 | DOI Listing |
Life Sci Alliance
September 2024
Department of Biology, Division of Immunology, University of Konstanz, Konstanz, Germany
The ubiquitin-like modifier FAT10 is upregulated under pro-inflammatory conditions, targets its substrates for proteasomal degradation and functions as a negative regulator of the type-I IFN response. Influenza A virus infection upregulates the production of type-I IFN and the expression of the E3 ligase TRIM21, which regulates type-I IFN production in a positive feedback manner. In this study, we show that FAT10 becomes covalently conjugated to TRIM21 and that this targets TRIM21 for proteasomal degradation.
View Article and Find Full Text PDFbioRxiv
June 2024
California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA94720, USA.
The ubiquitin-like modifier FAT10 targets hundreds of proteins in the mammalian immune system to the 26S proteasome for degradation. This degradation pathway requires the cofactor Nub1, yet the underlying mechanisms remain unknown. Here, we reconstituted a minimal system and revealed that Nub1 utilizes FAT10's intrinsic instability to trap its N-terminal ubiquitin-like domain in an unfolded state and deliver it to the 26S proteasome for engagement, allowing the degradation of FAT10-ylated substrates in a ubiquitin- and p97-independent manner.
View Article and Find Full Text PDFApoptosis
October 2024
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
The upregulation of programmed death ligand 1 (PD-L1) plays a crucial role in facilitating cancer cells to evade immune surveillance through immunosuppression. However, the precise regulatory mechanisms of PD-L1 in hepatocellular carcinoma (HCC) remain undefined. The correlation between PD-L1 and ubiquitin-like molecules (UBLs) was studied using sequencing data from 20 HCC patients in our center, combined with TCGA data.
View Article and Find Full Text PDFAm J Cancer Res
April 2024
Department of General Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330000, Jiangxi, China.
Although sorafenib is the first-line therapeutic agent for advanced hepatocellular carcinoma (HCC), the development of drug resistance in HCC cells limits its clinical efficacy. However, the key factors involved in mediating the sorafenib resistance of HCC cells and the underlying mechanisms have not been elucidated. In this study, we generated sorafenib-resistant HCC cell lines, and our data demonstrate that HLA-F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, is markedly upregulated in sorafenib-resistant HCC cells and that reducing the expression of FAT10 in sorafenib-resistant HCC cells increases sensitivity to sorafenib.
View Article and Find Full Text PDFOncogene
May 2024
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
RNA-binding proteins (RBPs) are critical regulators for RNA transcription and translation. As a key member of RBPs, ELAV-like family protein 2 (CELF2) has been shown to regulate RNA splicing and embryonic hematopoietic development and was frequently seen dysregulated in acute myeloid leukemia (AML). However, the functional role(s) of CELF2 in hematopoiesis and leukemogenesis has not been fully elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!