Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Telomerase is a reverse transcriptase enzyme that activates in more than 85% of cancer cells and it is associated with the acquisition of a malignant phenotype. Some experimental strategies have been suggested in order to avoid the enzyme effect on unstopped telomere elongation. One of them, the stabilization of the G-quartet structure, has been widely studied. Nevertheless, no QSAR studies to predict this activity have been developed. In the present study a classification model was carried out to identify, through molecular descriptors with structural fragments and groups information, those acridinic derivatives with better inhibitory concentration on telomerase enzyme. A linear discriminant model was developed to classify a data set of 90 acridinic derivatives (48 more potent derivatives with IC(50) < 1 microM and 42 less potent with IC(50) > or = 1 microM). The final model fit the data with sensitivity of 87.50% and specificity of 82.85%, for a final accuracy of 85.33%. The predictive ability of the model was assessed by a prediction set (15 compounds of 90% and 82.29% of prediction accuracy); a tenfold full cross-validation procedure (removing 15 compounds in each cycle, 84.80% of good prediction) and the prediction of inhibitory concentration on telomerase enzyme for external data of 10 novel acridines (90% of good prediction). The results of this study suggest that the established model has a strong predictive ability and can be prospectively used in the molecular design and action mechanism analysis of this kind of compounds with anticancer activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2009.07.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!