Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We develop a standardized, fully automated, quantification system for liver fibrosis assessment using second harmonic generation microscopy and a morphology-based quantification algorithm. Liver fibrosis is associated with an abnormal increase in collagen as a result of chronic liver diseases. Histopathological scoring is the most commonly used method for liver fibrosis assessment, where a liver biopsy is stained and scored by experienced pathologists. Due to the intrinsic limited sensitivity and operator-dependent variations, there exist high inter- and intraobserver discrepancies. We validate our quantification system, Fibro-C-Index, with a comprehensive animal study and demonstrate its potential application in clinical diagnosis to reduce inter- and intraobserver discrepancies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.3183811 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!