The eye is not a centered system. The line of sight connects the fovea with the center of the pupil and is usually tilted in the temporal direction. Thus, off-axis optical aberrations, mainly coma and oblique astigmatism, are introduced at the fovea. Tabernero et al. [J. Opt. Soc. Am. A 24(10), 3274-3283 (2007)] showed that a horizontal tilt of the crystalline lens generates a horizontal coma aberration that is compensated by the oblique light incidence on the eye. Here we suggest that corneal astigmatism may also play a role in compensation of oblique aberrations, and we propose a simple model to analyze such a possibility. A theoretical Kooijman eye model with a slight ( approximately 0.6 D) with-the-rule astigmatism is analyzed. Light rays at different incidence angles to the optical axis are considered, and the corresponding point spread functions (PSFs) at the retina are calculated. A quality criterion is used to determine the incidence angle that provides the narrowest and highest PSF energy peak. We show that the best image is obtained for a tilted incidence angle compatible with mean values of the angle kappa. This suggests that angle kappa, lens tilt, and corneal astigmatism may combine to provide a passive compensation mechanism to minimize aberrations on the fovea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.3158996 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!