Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A Monte Carlo formalism for the study of polymeric melts is described. The model is particle-based, but the interaction is derived from a local density functional that appears in the field-based model. The method enables Monte Carlo simulations in the nVT, nPT, semigrandcanonical and Gibbs ensembles, and direct calculation of free energies. The approach is illustrated in the context of two examples. In the first, we consider the phase separation of a binary homopolymer blend and present results for the phase diagram and the critical point. In the second, we address the microphase separation of a symmetric diblock copolymer, examine the distribution of local stresses in lamellae, and determine the order-disorder transition temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3187936 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!