Objective: To investigate the oxidative damage to lung tissue and peripherial blood in PM2.5-treated rats.

Methods: PM2.5 samples were collected using an auto-sampling instrument in summer and winter. Treated samples were endotracheally instilled into rats. Activity of reduced glutathione peroxidase (GSH-Px) and concentration of malondialdehyde (MDA) were used as oxidative damage biomarkers of lung tissue and peripheral blood detected with the biochemical method. DNA migration length (microm) and rate of tail were used as DNA damage biomarkers of lung tissue and peripheral blood detected with the biochemical method.

Results: The activity of GSH-Px and the concentration of MDA in lung tissue significantly decreased after exposure to PM2.5 for 7-14 days. In peripheral blood, the concentration of MDA decreased, but the activity of GSH-Px increased 7 and 14 days after experiments. The two indicators had a dose-effect relation and similar changing tendency in lung tissue and peripheral blood. The DNA migration length (microm) and rate of tail in lung tissue and peripheral blood significantly increased 7 and 14 days after exposure to PM2.5. The two indicators had a dose-effect relation and similar changing tendency in lung tissue and peripheral blood.

Conclusion: PM2.5 has a definite oxidative effect on lung tissue and peripheral blood. The activity of GSH-Px and the concentration of MDA are valuable biomarkers of oxidative lung tissue damage induced by PM2.5. The DNA migration length (microm) and rate of tail are simple and valuable biomarkers of PM2.5-induced DNA damage in lung tissues and peripheral blood. The degree of DNA damage in peripheral blood can predict the degree of DNA damage in lung tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0895-3988(09)60049-0DOI Listing

Publication Analysis

Top Keywords

lung tissue
44
peripheral blood
36
tissue peripheral
28
damage lung
16
dna damage
16
oxidative damage
12
lung
12
gsh-px concentration
12
dna migration
12
migration length
12

Similar Publications

Introduction: This study aimed to analyze the levels of MMP-9 and TIMP-1 as biomarkers for identifying lung anatomical and functional abnormalities in coronavirus disease 2019 (COVID-19).

Methodology: Adult COVID-19 patients hospitalized between October and December 2021 were included in the study. MMP-9 and TIMP-1 levels were measured from the blood.

View Article and Find Full Text PDF

Hyaluronic acid modified metal-organic frameworks loading cisplatin achieve combined chemodynamic therapy and chemotherapy for lung cancer.

Int J Biol Macromol

January 2025

Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China. Electronic address:

As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment.

View Article and Find Full Text PDF

Ex Vivo Fluorescence Confocal Microscopy for intraoperative evaluations of staple lines and surgical margins in specimens of the lung - a proof-of-concept study.

Mod Pathol

January 2025

Bielefeld University, Medical School and University Medical Center OWL, Lung Cancer Center Lippe, Department of Pathology, Klinikum Lippe Detmold, 32756 Detmold, Germany. Electronic address:

Intraoperative consultation is frequently used during the surgical treatment of lung tumors for the diagnosis of malignancy and the assessment of surgical margins. The latter is often problematic given the nature of the applied staple lines, which cannot be readily examined in frozen sections. Seventy-nine samples of surgical margins (71 staple lines and 8 open margins) from 52 lung specimens were examined using an ex vivo fluorescence confocal microscope (FCM).

View Article and Find Full Text PDF

Downregulation of the Phosphatase PHLPP1 Contributes to NNK-induced Malignant Transformation of Human Bronchial Epithelial Cells (HBECs).

J Biol Chem

January 2025

Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University; Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China. Electronic address:

Cigarette smoking (CS) is one of the greatest health concerns, which can cause lung cancer. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, and has been well-documented for its carcinogenic activity in both epidemiological and laboratory studies. PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and phosphatase and tensin homolog (PTEN) are two well-known phosphatase tumor suppressors that have been reported to be downregulated in human lung cancer tissues.

View Article and Find Full Text PDF

Lung tissue from human patients and murine models of sickle cell disease pulmonary hypertension (SCD-PH) show perivascular regions with excessive iron accumulation. The iron accumulation arises from chronic hemolysis and extravasation of hemoglobin (Hb) into the lung adventitial spaces, where it is linked to nitric oxide depletion, oxidative stress, inflammation, and tissue hypoxia, which collectively drive SCD-PH. Here, we tested the hypothesis that intrapulmonary delivery of hemopexin (Hpx) to the deep lung is effective at scavenging heme-iron and attenuating the progression of SCD-PH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!