Based on neuro-imaging studies in cocaine-addicted humans, it is hypothesized that increases in neural activity within several regions of the prefrontal cortex contribute to cue-induced cocaine seeking and cocaine-induced compulsive drug self-administration. However, electrophysiological tests of these hypotheses are lacking. In the present study, animals were trained to self-administer cocaine (0.75 mg/kg) for 14 days. On the 14th day, we conducted electrophysiological recordings of lateral orbitofrontal (LO) and ventral anterior insula (AIV) neurons. A subset of the combined population of recorded neurons showed a change in firing rate in association with one or more of the following discrete events: (1) presentation of a discriminative stimulus that signaled the onset of the self-administration session, (2) occurrence of the first cocaine-directed operant response, (3) occurrence of a cocaine-reinforced press, and (4) presentation of cues normally paired with delivery of the cocaine reinforcer. The majority of the stimulus- and response-related changes in firing involved a brief increase in firing during the stimulus and response event, respectively. In addition to these event-specific responses, approximately half of the recorded neurons exhibited a sustained change in average firing (i.e., discharges per 30-s bin) during the cocaine self-administration session, relative to average firing during a presession, drug-free period (referred to as session changes). The prevalence of session-increases and decreases were not significantly different. These and other findings are discussed in relation to hypotheses about cue-evoked and cocaine-maintained cocaine-directed behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/syn.20698 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!