The Notch signalling pathway is repeatedly employed during embryonic development and adult homeostasis of a variety of tissues. In particular, its frequent involvement in the regulation of stem and progenitor cell maintenance and proliferation, as well as its role in binary fate decisions in cells that are destined to differentiate, is remarkable. Here, we review its role in the development of haematopoietic stem cells during vertebrate embryogenesis and put it into the context of Notch's functions in arterial specification, angiogenic vessel sprouting and vessel maintenance. We further discuss interactions with other signalling cascades, and pinpoint open questions and some of the challenges that lie ahead.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.21905 | DOI Listing |
Arthroscopy is a minimally invasive surgical procedure used to diagnose and treat joint problems. The clinical workflow of arthroscopy typically involves inserting an arthroscope into the joint through a small incision, during which surgeons navigate and operate largely by relying on their visual assessment through the arthroscope. However, the arthroscope's restricted field of view and lack of depth perception pose challenges in navigating complex articular structures and achieving surgical precision during procedures.
View Article and Find Full Text PDFInt Endod J
January 2025
School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Aim: Effective control of mesenchymal stem cell (MSC) differentiation towards osteogenic lineages is fundamental for bone regeneration. This study elucidates the regulatory role of methyltransferase like 7A (METTL7A) in the osteogenic differentiation of MSCs.
Methodology: Alkaline phosphatase staining, Alizarin Red S staining, western blotting, and in vivo studies were conducted to determine the effects of METTL7A depletion or overexpression on the osteogenic differentiation of various types of MSCs.
J Zhejiang Univ Sci B
October 2024
Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
Hexavalent chromium Cr(VI), as a well-established carcinogen, contributes to tumorigenesis for many human cancers, especially respiratory and digestive tumors. However, the potential function and relevant mechanism of Cr(VI) on the initiation of esophageal carcinogenesis are largely unknown. Here, immortalized human esophageal epithelial cells (HEECs) were induced to be malignantly transformed cells, termed HEEC-Cr(VI) cells, via chronic exposure to Cr(VI), which simulates the progress of esophageal tumorigenesis.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Amity Institute of Pharmacy, Amity University Haryana Chemistry Gurugram India.
Objectives: In the last two decades, scientists have gained a better understanding of several aspects of pituitary development. The signaling pathways that govern pituitary morphology and development have been identified, and the compensatory relationships among them are now known.
Aims: This paper aims to emphasize the wide variety of relationships between Pituitary Gland and Stem cells in hormone Production and disease prevention.
Medicine (Baltimore)
November 2024
Department of Orthopaedics, Beijing Ditan Hospital Affiliated to Capital Medical University, Chaoyang District, Beijing, China.
Acquired immunodeficiency syndrome is a systemic infectious disease caused by human immunodeficiency virus infection, which could attack the bones and heart. However, the relationship between Nuclear Complex Associated 3 Homolog (NOC3L) and DEAD box helicase 17 (DDX17) and acquired immunodeficiency complicated with viral myocarditis and osteoporosis is unclear. The acquired immune deficiency dataset GSE140713, GSE147162 and the osteoporosis dataset (GSE230665), and viral myocarditis dataset (GSE150392) configuration files were generated from gene expression omnibus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!