This paper presents the concept of an optical transmitter based on optical arbitrary waveform generation (OAWG) capable of synthesizing Tb/s optical signals of arbitrary modulation format. Experimental and theoretical demonstrations in this paper include generation of data packet waveforms focusing on (a) achieving high spectral efficiencies in quadrature phase-shift keying (QPSK) and 16 quadrature amplitude modulation (16QAM) modulation formats, (b) generation of complex data waveform packets used for optical-label switching (OLS) consisting of a data payload and label on a carrier and subcarrier, and (c) repeatability and accuracy of duobinary (DB) data packet waveforms with BER measurements. These initial demonstrations are based on static OAWG, or line-by-line pulse shaping, to generate repeated waveforms of arbitrary shape. In addition to experimental and theoretical demonstrations of static OAWG, simulated results show dynamic OAWG, which involves encoding continuous data streams of arbitrary symbol sequence on data packet waveforms of arbitrary length.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.17.015911 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!